In vivo impedance measurements on nerves and surrounding skeletal muscles in rats and human body

2002 ◽  
Vol 40 (3) ◽  
pp. 323-326 ◽  
Author(s):  
E. Prokhorov ◽  
F. Llamas ◽  
E. Morales-Sánchez ◽  
J. González-Hernández ◽  
A. Prokhorov
2020 ◽  
Author(s):  
Anurag Vaidya ◽  
Benjamin Wheatley

Computational models of the human body – such as those that simulate automotive impact – rely onaccurate material properties for bodily tissues. However, the compressive behavior of skeletal muscle is not fullyunderstood, particularly with regards to compression under confinement by surrounding tissue. For example, itis likely that in vivo muscle experiences a variation between confined and unconfined volumetric boundaryconditions, but nearly all previous studies have focused on muscle in unconfined compression (UC) or fullyconfined compression (CC). Thus, we have developed novel instrumentation to investigate the effects ofvolumetric boundary conditions (SC and CC) on stress relaxation of skeletal muscles.


2011 ◽  
Vol 10 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Calin Corciova ◽  
Radu Ciorap ◽  
Dan Zaharia ◽  
Alexandru Salceanu

2020 ◽  
Author(s):  
Shiyu Luo ◽  
Qifei Li ◽  
Jasmine Lin ◽  
Quinn Murphy ◽  
Isabelle Marty ◽  
...  

Abstract SPEG, a member of the myosin light chain kinase family, is localized at the level of triad surrounding myofibrils in skeletal muscles. In humans, SPEG mutations are associated with centronuclear myopathy and cardiomyopathy. Using a striated muscle specific Speg-knockout (KO) mouse model, we have previously shown that SPEG is critical for triad maintenance and calcium handling. Here we further examined the molecular function of SPEG and characterized the effects of SPEG deficiency on triad and focal adhesion proteins. We used yeast two-hybrid assay, and identified desmin, an intermediate filament protein, to interact with SPEG and confirmed this interaction by co-immunoprecipitation. Using domain-mapping assay, we defined that Ig-like and fibronectin III domains of SPEG interact with rod domain of desmin. In skeletal muscles, SPEG depletion leads to desmin aggregates in vivo and a shift in desmin equilibrium from soluble to insoluble fraction. We also profiled the expression and localization of triadic proteins in Speg-KO mice using western blot and immunofluorescence. The amounts of RyR1 and triadin were markedly reduced, whereas DHPRα1, SERCA1, and triadin were abnormally accumulated in discrete areas of Speg-KO myofibers. In addition, Speg-KO muscles exhibited internalized vinculin and β1 integrin, both of which are critical components of the focal adhesion complex. Further, β1 integrin was abnormally accumulated in early endosomes of Speg-KO myofibers. These results demonstrate that SPEG-deficient skeletal muscles exhibit several pathological features similar to those seen in MTM1 deficiency. Defects of shared cellular pathways may underlie these structural and functional abnormalities in both types of diseases.


2017 ◽  
Vol 28 (6) ◽  
pp. 834-842 ◽  
Author(s):  
Amol Chaudhari ◽  
Richa Gupta ◽  
Sonal Patel ◽  
Nikkhil Velingkaar ◽  
Roman Kondratov

Insulin-like growth factor (IGF) signaling plays an important role in cell growth and proliferation and is implicated in regulation of cancer, metabolism, and aging. Here we report that IGF-1 level in blood and IGF-1 signaling demonstrates circadian rhythms. Circadian control occurs through cryptochromes (CRYs)—transcriptional repressors and components of the circadian clock. IGF-1 rhythms are disrupted in Cry-deficient mice, and IGF-1 level is reduced by 80% in these mice, which leads to reduced IGF signaling. In agreement, Cry-deficient mice have reduced body (∼30% reduction) and organ size. Down-regulation of IGF-1 upon Cry deficiency correlates with reduced Igf-1 mRNA expression in the liver and skeletal muscles. Igf-1 transcription is regulated through growth hormone–induced, JAK2 kinase–mediated phosphorylation of transcriptional factor STAT5B. The phosphorylation of STAT5B on the JAK2-dependent Y699 site is significantly reduced in the liver and skeletal muscles of Cry-deficient mice. At the same time, phosphorylation of JAK2 kinase was not reduced upon Cry deficiency, which places CRY activity downstream from JAK2. Thus CRYs link the circadian clock and JAK-STAT signaling through control of STAT5B phosphorylation, which provides the mechanism for circadian rhythms in IGF signaling in vivo.


2020 ◽  
Author(s):  
Chiara Da Pieve ◽  
Gabriela Kramer Marek ◽  
Jolanta Saczko ◽  
Anant Shah ◽  
Florian Raes

ABSTRACTAltough nanomaterial-mediated phototherapy has been extensively studied, the major antitumor success is limited to treating subcutaneous tumor on nude, lacking of clinically-relevant big animal study. Therefore, it is urgent to make further investigation on the typical big model, which is more closely related to the human body. In this work, niobium carbide (NbC) was selected as photoactive substance in virtue of its outstanding near infrared (NIR) absorption properties and resultantly NIR-triggered hyperthemia and reactive oxygen species generation for the synergetic photothermal and photodynamic effect. Moreover, macrophage was used as bio-carrier for the targeted delivery of NbC and the phagocytosis of macrophages was proved to be able to retain the photothermal/photodynamic effect of NbC. Resultantly, macrophage loaded NbC could realize complete removal of solid tumor on both of nude mice and big animal of rabbits. Meanwhile, two-dimensional ultrasound, shave wave elastography (SWE) and contrast-enhanced ultrasound (CEUS) have been applied for monitoring the physiological evolutions of in vivo tumor post treatment, which clearly disclosed the photoablation process of tumor and provided a new way for the surveillance of tumor on the big animal study. Hence, large animal model study in this work presented higher clinical significance than the previous studies.SignificanceFindings show that niobium carbide carried by macrophages can be used for targeted phototherapy. At the same time, we applied the rabbit tumor model which is closer to the human body microenvironment.


Physiology ◽  
1990 ◽  
Vol 5 (1) ◽  
pp. 17-21 ◽  
Author(s):  
DT Barry

Contracting skeletal muscles emit pressure waves that are audible at the skin surface and are easily recorded with standard microphones both in vivo and in vitro. These muscle sounds are an intrinsic component of the contractile mechanism and are produced by mechanical vibrations at the resonant frequency of the muscle. The sounds are useful in measuring force, fatigue, and mechanical properties of muscle.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4828
Author(s):  
Giselle González-López ◽  
Lluis Jofre Roca ◽  
Susana Amorós García de Valdecasas ◽  
Oriol Rodríguez-Leor ◽  
Carolina Gálvez-Montón ◽  
...  

There is an increasing need for safe and simple techniques for sensing devices and prostheses implanted inside the human body. Microwave wireless inspection may be an appropriate technique for it. The implanted device may have specific characteristics that allow to distinguish it from its environment. A new sensing technique based on the principle of differential resonance is proposed and its basic parameters are discussed. This technique allows to use the implant as a signal scattering device and to detect changes produced in the implant based on the corresponding change in its scattering signature. The technique is first tested with a canonic human phantom and then applied to a real in vivo clinical experiment to detect coronary stents implanted in swine animals.


Sign in / Sign up

Export Citation Format

Share Document