Subsonic and transonic flow field in two-dimensional de laval nozzles

1985 ◽  
Vol 1 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Pu Qun ◽  
Lin Tongji
2020 ◽  
Vol 7 (3) ◽  
pp. 597-610 ◽  
Author(s):  
Tian Zhang ◽  
Deji Jing ◽  
Shaocheng Ge ◽  
Jiren Wang ◽  
Xiangxi Meng ◽  
...  

Abstract To simulate the transonic atomization jet process in Laval nozzles, to test the law of droplet atomization and distribution, to find a method of supersonic atomization for dust-removing nozzles, and to improve nozzle efficiency, the finite element method has been used in this study based on the COMSOL computational fluid dynamics module. The study results showed that the process cannot be realized alone under the two-dimensional axisymmetric, three-dimensional and three-dimensional symmetric models, but it can be calculated with the transformation dimension method, which uses the parameter equations generated from the two-dimensional axisymmetric flow field data of the three-dimensional model. The visualization of this complex process, which is difficult to measure and analyze experimentally, was realized in this study. The physical process, macro phenomena and particle distribution of supersonic atomization are analyzed in combination with this simulation. The rationality of the simulation was verified by experiments. A new method for the study of the atomization process and the exploration of its mechanism in a compressible transonic speed flow field based on the Laval nozzle has been provided, and a numerical platform for the study of supersonic atomization dust removal has been established.


Author(s):  
S. Zhou ◽  
M. Y. Shen ◽  
B. Z. Lin

In order to extend the usage range of a cascade having excellent aerodynamic performance, it is beneficial to investigate the similarity between different flow fields. Von Karman gave transonic similarity law of two-dimensional isolated airfoils many years ago. However, the law of cascades is still different from that of airfoils. This paper points out that, to guarantee similarity between two flow fields around cascades, it is necessary that five corresponding transonic similarity parameters must be kept equal. Also some examples have been presented in this paper for demonstration. They indicate that the similarity law will help us to obtain rapidly many similar transonic flow fields around cascades at different operating conditions from a known flow field around a given cascade.


Author(s):  
P. W. McDonald

Steady transonic flow through two-dimensional gas turbine cascades is efficiently predicted using a time-dependent formulation of the equations of motion. An integral representation of the equations has been used in which subsonic and supersonic regions of the flow field receive identical treatment. Mild shock structures are permitted to develop naturally without prior knowledge of their exact strength or position. Although the solutions yield a complete definition of the flow field, the primary aim is to produce airfoil surface pressure distributions for the design of aerodynamically efficient turbine blade contours. In order to demonstrate the accuracy of this method, computed airfoil pressure distributions have been compared to experimental results.


Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
J. Barry Greenberg ◽  
David Katoshevski

A theoretical investigation of the influence of a standing wave flow-field on the dynamics of a laminar two-dimensional spray diffusion flame is presented for the first time. The mathematical analysis permits mild slip between the droplets and their host surroundings. For the liquid phase, the use of a small Stokes number as the perturbation parameater enables a solution of the governing equations to be developed. Influence of the standing wave flow-field on droplet grouping is described by a specially constructed modification of the vaporization Damkohler number. Instantaneous flame front shapes are found via a solution for the usual Schwab–Zeldovitch parameter. Numerical results obtained from the analytical solution uncover the strong bearing that droplet grouping, induced by the standing wave flow-field, can have on flame height, shape, and type (over- or under-ventilated) and on the existence of multiple flame fronts.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 139-148
Author(s):  
Shiyang Liu ◽  
Xuefu Zhang ◽  
Feng Gao ◽  
Liangwen Wei ◽  
Qiang Liu ◽  
...  

AbstractWith the rapid development of traffic infrastructure in China, the problem of crystal plugging of tunnel drainage pipes becomes increasingly salient. In order to build a mechanism that is resilient to the crystal plugging of flocking drainage pipes, the present study used the numerical simulation to analyze the two-dimensional flow field distribution characteristics of flocking drainage pipes under different flocking spacings. Then, the results were compared with the laboratory test results. According to the results, the maximum velocity distribution in the flow field of flocking drainage pipes is closely related to the transverse distance h of the fluff, while the longitudinal distance h of the fluff causes little effect; when the transverse distance h of the fluff is less than 6.25D (D refers to the diameter of the fluff), the velocity between the adjacent transverse fluffs will be increased by more than 10%. Moreover, the velocity of the upstream and downstream fluffs will be decreased by 90% compared with that of the inlet; the crystal distribution can be more obvious in the place with larger velocity while it is less at the lower flow rate. The results can provide theoretical support for building a mechanism to deal with and remove the crystallization of flocking drainage pipes.


2015 ◽  
Vol 15 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Matthias Ratajczak ◽  
Thomas Wondrak ◽  
Klaus Timmel ◽  
Frank Stefani ◽  
Sven Eckert

AbstractIn continuous casting DC magnetic fields perpendicular to the wide faces of the mold are used to control the flow in the mold. Especially in this case, even a rough knowledge of the flow structure in the mold would be highly desirable. The contactless inductive flow tomography (CIFT) allows to reconstruct the dominating two-dimensional flow structure in a slab casting mold by applying one external magnetic field and by measuring the flow-induced magnetic fields outside the mold. For a physical model of a mold with a cross section of 140 mm×35 mm we present preliminary measurements of the flow field in the mold in the presence of a magnetic brake. In addition, we show first reconstructions of the flow field in a mold with the cross section of 400 mm×100 mm demonstrating the upward scalability of CIFT.


Sign in / Sign up

Export Citation Format

Share Document