Fractionation procedures for obtaining cocoa butter-like fat from enzymatically interesterified palm olein

1992 ◽  
Vol 69 (2) ◽  
pp. 137-140 ◽  
Author(s):  
C. N. Chong ◽  
Y. M. Hoh ◽  
C. W. Wang
Keyword(s):  
Food Industry ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 29-36
Author(s):  
Alexander Vereshchagin ◽  
Irina Reznichenko ◽  
Nikolay Bychin

The article concerns the research specificity of model systems such as cocoa butter – palm olein, cocoa butter – sucrose and cocoa butter – glucose syrup by the differential scanning calorimetry (DSC) method. The researchers run experiments in the temperature range from –100 to –50°C at a heating rate of 10 °C/min. In the cacao butter – palm olein system an eutectic occurs with a palm olein content of 30.0 % indicating the limited solubility of palm olein in cocoa butter. In the cocoa butter – sucrose system, cocoa butter crystallizes as in the α-form (10,0– 30,0; 60.0–90.0 % MK), and as a mixture of α-and β-forms of MK (40.0; 50,0; 70,0 and 80.0 %). Sucrose stabilizes low-temperature polymorphic modifications of cocoa butter. In the cocoa butter – glucose syrup system, temperature of samples melting is 21-22 °C. This composition is promising for use as a filling of confectionery products and glazes production. In this regard, a man can use glucose syrup only in the candy cases production. The role of surfactants used for the formation and stabilization of cocoa butter polymorphs and increasing the thermal stability of the shock-lad without the introduction of palm stearin requires separate consideration.


2017 ◽  
Vol 66 (4) ◽  
pp. 506-511
Author(s):  
Nieves María Flores March ◽  
Gabriela Cristina Chire Fajardo ◽  
Carlos Eduardo Lescano Anadón

The effects of replacing cocoa butter with different percentages and proportions of a mango kernel fat/palm olein (MKF/POL) blend, are reported. Samples were prepared by melting together mango kernel fat, palm olein, cocoa butter and cocoa mass and powdered sugar combinated. The samples were milled, conched, tempered, and molded to obtain three sets of seven samples as follows: one control omitting mango kernel fat and palm olein, and six samples with cocoa butter replacement of 15 and 22.5% and MKF/POL ratios of 2.3, 4.0, and 9.0. Casson viscosity, Casson yield stress, fat bloom and sensory acceptability were all measured. In fact, all samples had achieved a low Casson viscosity (ηCA) and Casson yield stress (τ_oCA), which indicates molding and enrobing as appropriate uses. In addition, some significant differences (p ≤ 0.05) were found among samples. Fat bloom was accelerated in the samples relative to control, but high MKF proportions tended to retard appearance of fat bloom. No differences were observed in organoleptic properties between samples and control.


Author(s):  
Welma Stonehouse ◽  
Domenico Sergi ◽  
Bianca Benassi-Evans ◽  
Genevieve James-Martin ◽  
Nathan Johnson ◽  
...  

ABSTRACT Background Effects of dietary fat quality on liver fat remain to be elucidated. Inconsistent evidence may be influenced by fatty acid saturation, chain-length, and regio-specificity within triacylglycerol (TAG) molecules. Objectives We aimed to compare eucaloric diets enriched in palm olein (POo), cocoa butter (COB), and soybean oil (SBO) on liver fat concentration in healthy participants. Secondary outcomes included visceral (VAT) and abdominal subcutaneous (aSCAT) adipose tissue, plus other obesity and cardiometabolic health outcomes. Methods Eighty-three healthy participants (20–45 y, BMI 18.5–27.5 kg/m2) commenced and 64 completed a 16-wk randomized parallel intervention, preceded by a 2-wk run-in. Participants consumed identical eucaloric background diets differing in test fats [contributing 20% total energy intake (%E)], providing 33%E total fat with the following ratios for PUFAs/SFAs/MUFAs: POo, 4.2/13.5/15%E; SBO, 14.4/8.8/9.4%E; COB, 2.3/19.5/11%E. Liver fat and abdominal adiposity were measured at weeks 0 and 16 using 1H-magnetic resonance spectroscopy/imaging; all other outcomes were measured at 0, 4, 8, 12, and 16 wk. Results Fat quality did not affect liver fat concentration, VAT, aSCAT, obesity indexes, blood pressure, liver enzymes, leptin, or fasting glucose. Body fat mass decreased with SBO and COB compared with POo. SBO decreased serum total cholesterol (TC), LDL cholesterol, and TC:HDL cholesterol relative to POo [estimated marginal mean (95% CI) differences: −0.57 (−0.94, −0.20) mmol/L; −0.37 (−0.68, −0.07) mmol/L; and −0.42 (−0.73, −0.11) mmol/L, respectively]. No diet differences were observed on HDL cholesterol, TAG, apoA1, apoB, apoB:apoA1, or fecal free fatty acids (FFAs), except for lower FFA pentadecanoic acid (15:0) with COB than with SBO and POo. Conclusions In healthy adults, when consumed as part of eucaloric typical Australian diets, 3 different dietary fat sources did not differentially affect liver fat concentration and amounts of adipose tissue. Effects on serum lipids were inconsistent across lipid profiles. The findings must be confirmed in metabolically impaired individuals before recommendations can be made.


2019 ◽  
Vol 9 (2) ◽  
pp. 157-160
Author(s):  
Ali Hasani

Background: Laser ablation method has high-yield and pure SWCNHs. On the other hand, arc discharge methods have low-cost production of SWCNHs. However, these techniques have more desirable features, they need special expertness to use high power laser or high current discharge that either of them produces very high temperature. As for the researches, the temperatures of these techniques are higher than 4727°C to vaporize the graphite. So, to become aware of the advantages of SWCNHs, it is necessary to find a new way to synthesize SWCNHs at a lower temperature. In other words, reaction field can be expandable at a moderate temperature. This paper reports a new way to synthesize SWCNHs at an extremely reduced temperature. Methods: According to this study, the role of N2 is the protection of the copper holder supporting the graphite rod by increasing heat transfer from the holder. After the current of 70 A was supplied to the system, the temperature of graphite rod was raised to 1600°C. It is obvious that this temperature is somehow higher than the melting point of palladium, 1555°C, and much lower than graphite melting point, 3497°C. Results: Based on the results, there are transitional precursors simultaneous with the SWCNHs. This composition can be created by distortion of the primary SWCNTs at the higher temperature. Subsequently, each SWCNTs have a tendency to be broken into individual horns. With increasing the concentration of the free horns, bud-like SWCNHs can be produced. Moreover, there are individual horns almost separated from the mass of single wall carbon nanohorns. This structure is not common in SWCNHs synthesized by the usual method such as arc discharge or laser ablation. Through these regular techniques, SWCNHs are synthesized as cumulative particles with diameters about 30-150 nm. Conclusion: A simple heating is needed for SWCNTs transformation to SWCNHs with the presence of palladium as catalyst. The well-thought-out mechanism for this transformation is that SWCNTs were initially changed to highly curled shape, and after that were formed into small independent horns. The other rout to synthesize SWCNHs is the pyrolysis of palm olein at 950°C with the assistance of zinc nitrate and ferrocene. Palm olein was used as a promising, bio-renewable and inexpensive carbon source for the production of carbon nanohorns.


Sign in / Sign up

Export Citation Format

Share Document