Removal of sialic acid from the surface of human MCF-7 mammary cancer cells abolishes E-cadherin-dependent cell-cell adhesion in an aggregation assay

1995 ◽  
Vol 31 (8) ◽  
pp. 633-639 ◽  
Author(s):  
J. J. Deman ◽  
N. A. van Larebeke ◽  
E. A. Bruyneel ◽  
M. E. Bracke ◽  
S. J. Vermeulen ◽  
...  
2005 ◽  
Vol 173 (4S) ◽  
pp. 170-170
Author(s):  
Maxine G. Tran ◽  
Miguel A. Esteban ◽  
Peter D. Hill ◽  
Ashish Chandra ◽  
Tim S. O'Brien ◽  
...  

2015 ◽  
Vol 210 (7) ◽  
pp. 1065-1074 ◽  
Author(s):  
Julie M. Bianchini ◽  
Khameeka N. Kitt ◽  
Martijn Gloerich ◽  
Sabine Pokutta ◽  
William I. Weis ◽  
...  

As part of the E-cadherin–β-catenin–αE-catenin complex (CCC), mammalian αE-catenin binds F-actin weakly in the absence of force, whereas cytosolic αE-catenin forms a homodimer that interacts more strongly with F-actin. It has been concluded that cytosolic αE-catenin homodimer is not important for intercellular adhesion because E-cadherin/αE-catenin chimeras thought to mimic the CCC are sufficient to induce cell–cell adhesion. We show that, unlike αE-catenin in the CCC, these chimeras homodimerize, bind F-actin strongly, and inhibit the Arp2/3 complex, all of which are properties of the αE-catenin homodimer. To more accurately mimic the junctional CCC, we designed a constitutively monomeric chimera, and show that E-cadherin–dependent cell adhesion is weaker in cells expressing this chimera compared with cells in which αE-catenin homodimers are present. Our results demonstrate that E-cadherin/αE-catenin chimeras used previously do not mimic αE-catenin in the native CCC, and imply that both CCC-bound monomer and cytosolic homodimer αE-catenin are required for strong cell–cell adhesion.


2016 ◽  
Vol 81 ◽  
pp. 218-224 ◽  
Author(s):  
P. Ghosal ◽  
O.A. Sukocheva ◽  
T. Wang ◽  
G.C. Mayne ◽  
D.I. Watson ◽  
...  

Urology ◽  
2001 ◽  
Vol 58 (6) ◽  
pp. 1064-1069 ◽  
Author(s):  
Hidenobu Miura ◽  
Kenji Nishimura ◽  
Akira Tsujimura ◽  
Kiyomi Matsumiya ◽  
Kunio Matsumoto ◽  
...  

Endocrinology ◽  
1987 ◽  
Vol 120 (6) ◽  
pp. 2597-2603 ◽  
Author(s):  
E. PRICE STOVER ◽  
ARUNA V. KRISHNAN ◽  
DAVID FELDMAN

2019 ◽  
Vol 20 (14) ◽  
pp. 3404 ◽  
Author(s):  
Andrea Dalle Vedove ◽  
Federico Falchi ◽  
Stefano Donini ◽  
Aurelie Dobric ◽  
Sebastien Germain ◽  
...  

Cadherins are a large family of transmembrane calcium-dependent cell adhesion proteins that orchestrate adherens junction formation and are crucially involved in tissue morphogenesis. Due to their important role in cancer development and metastasis, cadherins can be considered attractive targets for drug discovery. A recent crystal structure of the complex of a cadherin extracellular portion and a small molecule inhibitor allowed the identification of a druggable interface, thus providing a viable strategy for the design of cadherin dimerization modulators. Here, we report on a structure-based virtual screening approach that led to the identification of efficient and selective modulators of E-cadherin-mediated cell–cell adhesion. Of all the putative inhibitors that were identified and experimentally tested by cell adhesion assays using human pancreatic tumor BxPC-3 cells expressing both E-cadherin and P-cadherin, two compounds turned out to be effective in inhibiting stable cell–cell adhesion at micromolar concentrations. Moreover, at the same concentrations, one of them also showed anti-invasive properties in cell invasion assays. These results will allow further development of novel and selective cadherin-mediated cell–cell adhesion modulators for the treatment of a variety of cadherin-expressing solid tumors and for improving the efficiency of drug delivery across biological barriers.


2019 ◽  
Vol 41 (7) ◽  
pp. 865-874
Author(s):  
Gjendine Voss ◽  
Benedikta S Haflidadóttir ◽  
Helena Järemo ◽  
Margareta Persson ◽  
Tina Catela Ivkovic ◽  
...  

Abstract Prostate cancer is one of the most common cancers in men, yet the biology behind lethal disease progression and bone metastasis is poorly understood. In this study, we found elevated levels of microRNA-96 (miR-96) in prostate cancer bone metastasis samples. To determine the molecular mechanisms by which miR-96 deregulation contributes to metastatic progression, we performed an Argonaute2-immunoprecipitation assay, in which mRNAs associated with cell–cell interaction were enriched. The expression of two cell adhesion molecules, E-Cadherin and EpCAM, was upregulated by miR-96, and potential targets sites were identified in the coding sequences of their mRNAs. We further showed that miR-96 enhanced cell–cell adhesion between prostate cancer cells as well as their ability to bind to osteoblasts. Our findings suggest that increased levels of miR-96 give prostate cancer cells an advantage at forming metastases in the bone microenvironment due to increased cell–cell interaction. We propose that miR-96 promotes bone metastasis in prostate cancer patients by facilitating the outgrowth of macroscopic tumours in the bone.


Sign in / Sign up

Export Citation Format

Share Document