The present study undertakes comparative analyses of the mechanistic differences of the arterial matrix microstructure and dynamics in the three fundamental processes of control, conotruncal banded, and released conotruncal band in avian embryo. Among other findings, this study provides specific evidence on the restorative role of elastin during the early lumen growth process. During vascular development, a novel intermittent load-switching mechanism between elastin and collagen, triggered by a step increase in wall shear stress, governs the chronic vessel lumen cross-sectional area increase. Mimicking the fetal cardiovascular interventions currently performed in humans, the early release of the abnormal mechanical load rescues the arterial microstructure with time-lag.