Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites

1994 ◽  
Vol 25 (5) ◽  
pp. 969-983 ◽  
Author(s):  
A. T. Alpas ◽  
J. Zhang
2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Ridvan Gecu ◽  
Ahmet Karaaslan

This study aims to investigate the effect of volume fraction of commercially pure titanium (CP-Ti) on microstructural, mechanical, and tribological features of A356 aluminum matrix composites. Vacuum-assisted melt infiltration casting was performed to produce composites with 50%, 65%, 75%, and 80% CP-Ti contents. CP-Ti sawdusts were assembled under mechanical pressure in order to attain porous one-piece CP-Ti preforms which were infiltrated by A356 melt at 730 °C under 10−5 Pa vacuum atmosphere. TiAl3 layer was formed at the interface between A356 and CP-Ti phases. Owing to increased diffusion time through decreased diffusion path length, both thickness and hardness of TiAl3 phase were increased with increasing CP-Ti ratio, whereas the best wear resistance was obtained at 65% CP-Ti ratio. The main reason for decrease in wear resistance of 75% and 80% CP-Ti reinforced composites was fragmentation of TiAl3 layer during wear process due to its excessively increased brittleness. Strongly bonded TiAl3 phase at the interface provided better wear resistance, while weakly bonded ones caused to multiply wear rate.


2017 ◽  
Vol 62 (2) ◽  
pp. 1235-1242 ◽  
Author(s):  
A. Lekatou ◽  
N. Gkikas ◽  
A.E. Karantzalis ◽  
G. Kaptay ◽  
Z. Gacsi ◽  
...  

AbstractAluminum matrix composites were prepared by adding submicron sized WC particles into a melt of Al 1050 under mechanical stirring, with the scope to determine: (a) the most appropriate salt flux amongst KBF4, K2TiF6, K3AlF6and Na3AlF6for optimum particle wetting and distribution and (b) the maximum carbide volume fraction (CVF) for optimum response to sliding wear. The nature of the wetting agent notably affected particle incorporation, with K2TiF6providing the greatest particle insertion. A uniform aluminide (in-situ) and WC (ex-situ) particle distribution was attained. Two different sliding wear mechanisms were identified for low CVFs (≤1.5%), and high CVFs (2.0%), depending on the extent of particle agglomeration.


2012 ◽  
Vol 05 ◽  
pp. 433-440 ◽  
Author(s):  
M. Mehdinia ◽  
S.A. Jenabali Jahromi

The powder of the micro Al and variant volume fractions of nano Al 2 O 3 were milled by a high energy planetary ball-mill. By milling, a homogenous distribution of nano Al 2 O 3 particles in the metal matrix were developed. Then the milled powder was cold compressed and sintered at 545°C for one hr. The mold and the sintered sample hold in a furnace until the temperature reached 545°C. Then the hot 27mm diameter sample was extruded to 6mm diameter. From the extruded specimens, tensile, hardness and microstructure of the prepared specimens were determined. By these tests the effect of milling time, the percent of nano-particles and the microstructure were evaluated. The hardness and tensile behaviors of aluminum matrix composites reinforced with nano Al 2 O 3 particulate have been found to increase remarkably with the volume fraction of the reinforcement.


2017 ◽  
Vol 5 (2) ◽  
pp. 20-30
Author(s):  
Zaman Khalil Ibrahim

In this research aluminum matrix composites (AMCs) was reinforced by titanium carbide (TiC) particles and was produced. Powder metallurgy technique (PM) has been used to fabricate AMCs reinforced with various amounts (0%, 4%, 8%, 12%, 16% and 20% volume fraction) of TiC particles to study the effect of different volume fractions on mechanical properties of the Al-TiC composites. Measurements of compression strength and hardness showed that mechanical properties of composites increased with an increase in volume fraction of TiC Particles. Al-20 % vol. TiC composites exhibited the best properties with hardness value (97HRB) and compression strength value (275Mpa).


Sign in / Sign up

Export Citation Format

Share Document