Adult brain plasticity — what is revealed is exciting, what is hidden is critical

2002 ◽  
Vol 27 (5) ◽  
pp. 439-442 ◽  
Author(s):  
Neeraj Jain
Keyword(s):  
1992 ◽  
Vol 3 (4) ◽  
pp. 265-266
Author(s):  
Franz Hefti ◽  
Dalia M. Araujo ◽  
Klaus D. Beck ◽  
Jonathan R. Day ◽  
Caleb E. Finch ◽  
...  

2018 ◽  
Author(s):  
Amanda K E Hornsby ◽  
Vanessa V Santos ◽  
Fionnuala Johnston ◽  
Luke D Roberts ◽  
Romana Stark ◽  
...  

Blood-borne factors regulate adult hippocampal neurogenesis (AHN) and cognition in mammals, albeit via mechanisms that are poorly understood. We report that elevating circulating unacylated-ghrelin (UAG), using both pharmacological and genetic methods, reduced hippocampal neurogenesis and plasticity in mice. Spatial memory impairments observed in GOAT-/- mice that lack acyl-ghrelin (AG) but have high levels of UAG, were rescued by treatment with AG. This unexpected finding suggests that the post-translational acylation of ghrelin is an important modulator of neurogenesis and memory in adult mammals. To determine whether this paradigm is relevant to humans we analysed circulating AG:UAG levels in Parkinson's disease (PD) patients diagnosed with dementia (PDD), cognitively intact PD patients and healthy controls. Uniquely, the ratio of plasma AG:UAG was reduced in the PDD cohort and correlated with cognitive performance. Our results identify UAG as a novel regulator of neurogenesis and cognition, and AG:UAG as a circulating diagnostic biomarker of dementia. The findings extend our understanding of adult brain plasticity regulation by circulating factors and suggest that manipulating the post-translational acylation of plasma ghrelin may offer therapeutic opportunities to ameliorate cognitive decline.


2021 ◽  
Author(s):  
Mariel Roberts ◽  
Marisa Carrasco

SUMMARYVisual perceptual learning (VPL), or improved performance after practicing the same visual task, is a behavioral manifestation of the impressive neuroplasticity in the adult brain. However, its practical effectiveness is limited because improvements are often specific to the trained conditions and require significant time and effort. Thus, it is critical to understand the conditions that promote learning and its transfer. Covert spatial attention helps overcome VPL location and feature specificity in neurotypical adults, but whether it can for people with atypical visual development is unknown. Here we show that involuntary attention helps generalize learning beyond trained spatial locations in adults with amblyopia, an ideal population for investigation given their asymmetrically developed, but highly plastic, visual cortex. Our findings provide insight into the mechanisms underlying changes in neuro(a)typical brain plasticity after practice. Further, they reveal that attention can enhance the effectiveness of perceptual learning during rehabilitation of visual disorders.


2020 ◽  
Vol 223 (15) ◽  
pp. jeb210542
Author(s):  
Lara D. LaDage

ABSTRACTThe production of new neurons in the brains of adult animals was first identified by Altman and Das in 1965, but it was not until the late 20th century when methods for visualizing new neuron production improved that there was a dramatic increase in research on neurogenesis in the adult brain. We now know that adult neurogenesis is a ubiquitous process that occurs across a wide range of taxonomic groups. This process has largely been studied in mammals; however, there are notable differences between mammals and other taxonomic groups in how, why and where new neuron production occurs. This Review will begin by describing the processes of adult neurogenesis in reptiles and identifying the similarities and differences in these processes between reptiles and model rodent species. Further, this Review underscores the importance of appreciating how wild-caught animals vary in neurogenic properties compared with laboratory-reared animals and how this can be used to broaden the functional and evolutionary understanding of why and how new neurons are produced in the adult brain. Studying variation in neural processes across taxonomic groups provides an evolutionary context to adult neurogenesis while also advancing our overall understanding of neurogenesis and brain plasticity.


2014 ◽  
Vol 26 (10) ◽  
pp. 2187-2200 ◽  
Author(s):  
Hamed Zivari Adab ◽  
Ivo D. Popivanov ◽  
Wim Vanduffel ◽  
Rufin Vogels

Practicing simple visual detection and discrimination tasks improves performance, a signature of adult brain plasticity. The neural mechanisms that underlie these changes in performance are still unclear. Previously, we reported that practice in discriminating the orientation of noisy gratings (coarse orientation discrimination) increased the ability of single neurons in the early visual area V4 to discriminate the trained stimuli. Here, we ask whether practice in this task also changes the stimulus tuning properties of later visual cortical areas, despite the use of simple grating stimuli. To identify candidate areas, we used fMRI to map activations to noisy gratings in trained rhesus monkeys, revealing a region in the posterior inferior temporal (PIT) cortex. Subsequent single unit recordings in PIT showed that the degree of orientation selectivity was similar to that of area V4 and that the PIT neurons discriminated the trained orientations better than the untrained orientations. Unlike in previous single unit studies of perceptual learning in early visual cortex, more PIT neurons preferred trained compared with untrained orientations. The effects of training on the responses to the grating stimuli were also present when the animals were performing a difficult orthogonal task in which the grating stimuli were task-irrelevant, suggesting that the training effect does not need attention to be expressed. The PIT neurons could support orientation discrimination at low signal-to-noise levels. These findings suggest that extensive practice in discriminating simple grating stimuli not only affects early visual cortex but also changes the stimulus tuning of a late visual cortical area.


2018 ◽  
Vol 120 (4) ◽  
pp. 1772-1775 ◽  
Author(s):  
Alberto Lazari ◽  
Sigrid Koudelka ◽  
Cassandra Sampaio-Baptista

The production of new myelin has been highlighted as an underappreciated mechanism of brain plasticity, but whether plastic decreases in myelin also happen in the adult brain has been largely unexplored. Recently, Sinclair et al. (Sinclair JS, Fischl MJ, Alexandrova O, Heß M, Grothe B, Leibold C, and Kopp-Scheinpflug C. J Neurosci 37: 8239–8255, 2017) have shown that auditory deprivation can lead to decrease in myelination and axon caliber even in healthy adulthood. These findings show that activity-regulated myelination is more complex than previously thought and expand our knowledge of how adult brain plasticity could operate on a cellular level.


2019 ◽  
Author(s):  
Ana C. Delgado ◽  
Angel R. Maldonado-Soto ◽  
Violeta Silva-Vargas ◽  
Dogukan Mizrak ◽  
Thomas von Känel ◽  
...  

AbstractQuiescent neural stem cells (NSCs) in the adult ventricular-subventricular zone (V-SVZ) have a regional identity and undergo activation to generate neurons. The domains for gliogenesis are less explored. Here we show that Platelet-Derived Growth Factor Receptor beta (PDGFRβ) is expressed by adult V-SVZ NSCs that generate olfactory bulb interneurons and glia with slow baseline kinetics. Selective deletion of PDGFRβ in adult V-SVZ NSCs leads to their release from quiescence uncovering multiple domains in the septal wall for oligodendrocyte and astrocyte formation. Unexpectedly, we identify a novel intraventricular oligodendrocyte progenitor inside the brain ventricles. Together our findings reveal different NSC spatial domains for gliogenesis in the adult V-SVZ that are largely quiescent under homeostasis and may have key functions for brain plasticity.


2021 ◽  
Vol 2 ◽  
Author(s):  
Matthew Dodson ◽  
Annadurai Anandhan ◽  
Donna D. Zhang ◽  
Lalitha Madhavan

Redox and metabolic mechanisms lie at the heart of stem cell survival and regenerative activity. NRF2 is a major transcriptional controller of cellular redox and metabolic homeostasis, which has also been implicated in ageing and lifespan regulation. However, NRF2’s role in stem cells and their functioning with age is only just emerging. Here, focusing mainly on neural stem cells, which are core to adult brain plasticity and function, we review recent findings that identify NRF2 as a fundamental player in stem cell biology and ageing. We also discuss NRF2-based molecular programs that may govern stem cell state and function with age, and implications of this for age-related pathologies.


2016 ◽  
Vol 87 (3) ◽  
pp. 156-166 ◽  
Author(s):  
Kent D. Dunlap

Fish have unusually high rates of brain cell proliferation and neurogenesis during adulthood, and the rates of these processes are greatly influenced by the environment. This high level of cell proliferation and its responsiveness to environmental change indicate that such plasticity might be a particularly important mechanism underlying behavioral plasticity in fish. However, as part of their highly labile physiology and morphology, fish also respond to the environment through processes that affect cell proliferation but that are not specific to behavioral change. For example, the environment has nonspecific influences on cell proliferation all over the body via its effect on body temperature and growth rate. In addition, some fish species also have an unusual capacity for sex change and somatic regeneration, and both of these processes likely involve widespread changes in cell proliferation. Thus, in evaluating the possible behavioral role of adult brain cell proliferation, it is important to distinguish regionally specific responses in behaviorally relevant brain nuclei from global proliferative changes across the whole brain or body. In this review, I first highlight how fish differ from other vertebrates, particularly birds and mammals, in ways that have a bearing on the interpretation of brain plasticity. I then summarize the known effects of the physical and social environment, sex change, and predators on brain cell proliferation and neurogenesis, with a particular emphasis on whether the effects are regionally specific. Finally, I review evidence that environmentally induced changes in brain cell proliferation and neurogenesis in fish are mediated by hormones and play a role in behavioral responses to the environment.


2014 ◽  
Vol 94 (1) ◽  
pp. 189-234 ◽  
Author(s):  
Alessandro Sale ◽  
Nicoletta Berardi ◽  
Lamberto Maffei

Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes.


Sign in / Sign up

Export Citation Format

Share Document