A path generation algorithm of an Automatic Guided Vehicle using sensor scanning method

2002 ◽  
Vol 16 (2) ◽  
pp. 137-146 ◽  
Author(s):  
Tong-Jin Park ◽  
Jung-Woo Ahn ◽  
Chang-Soo Han
Author(s):  
David Manuel Ochoa González ◽  
Joao Carlos Espindola Ferreira

Traditional (direction-parallel and contour-parallel) and non-traditional (trochoidal) tool paths are generated by specialized geometric algorithms based on the pocket shape and various parameters. However, the tool paths generated with those methods do not usually consider the required machining power. In this work, a method for generating power-aware tool paths is presented, which uses the power consumption estimation for the calculation of the tool path. A virtual milling system was developed to integrate with the tool path generation algorithm in order to obtain tool paths with precise power requirement control. The virtual milling system and the tests used to calibrate it are described within this article, as well as the proposed tool path generation algorithm. Results from machining a test pocket are presented, including the real and the estimated power requirements. Those results were compared with a contour-parallel tool path strategy, which has a shorter machining time but has higher in-process power consumption.


2018 ◽  
Vol 51 (17) ◽  
pp. 339-345 ◽  
Author(s):  
Jiayao Li ◽  
Ruizhi Sun ◽  
Chunming Cheng ◽  
Sicong Li

2016 ◽  
Vol 88 (5-8) ◽  
pp. 2169-2178 ◽  
Author(s):  
Zhiping Liu ◽  
Xiongbing Li ◽  
Yongfeng Song ◽  
Bing Yi ◽  
Feng Chen

2007 ◽  
Vol 10-12 ◽  
pp. 308-311
Author(s):  
Li Cheng Fan ◽  
L.N. Sun ◽  
Zhi Jiang Du

In 3-axis NC machining, most algorithms of the sculptured surface tool-path generation are valid for ball-cutter, and the axes are designed to realize pure translation. A tool-path generation algorithm using taper-cuter is proposed in this article. And one axis of the 3-axis NC tool machine is designed to realize swing motion. The Stereo Lithography (STL) model is the most popular triangular mesh approximation of the 3D surface model. Considering the special swing mechanical and taper-cutter, arc-zigzag tool-path planning and deform Z-map grid methods are proposed, which incorporate triangular vertexes method and the Z-map method. Finally, some simulation and experiment results are provided.


2020 ◽  
Vol 26 (10) ◽  
pp. 1751-1759
Author(s):  
Li Zhang ◽  
Linshan Ding ◽  
Saif Ullah ◽  
Tao Hu ◽  
Yangyang Xu ◽  
...  

Purpose The principle of the medial axis calculation is complicated and difficult to implement. Moreover, the accuracy is not high. Then, as the generated path has an endpoint at the boundary of the polygon, burrs may appear on the surface of the molded piece. This paper aims to improve the warpage deformation of SLM molded parts and the surface quality of molded parts, an improved mid-axis path generation algorithm is proposed. Design/methodology/approach First, the center point is calculated by the seed point growth method based on the distance transform, and the obtained medial axis has high precision and is suitable for simple polygons and complex polygons. Then, based on the extracted medial axis, a preliminary path is generated, the path is trimmed with MATLAB to remove the redundant path. Finally, a scan along the contour of the polygon is performed to improve the surface quality of the molded part. Findings The algorithm reduces the internal stress generated during the molding process by continuously changing the scanning direction of the path along the boundary curve of the scanning area, thereby reducing the amount of warpage of the molded part. The result of extraction has a higher precision and wider scope of application than other methods to extract central axis, such as the Voronoi diagram-based method. The path is trimmed to remove redundant paths and the polygon boundaries are scanned to further improve the surface quality of the molded part. The results show that warpage deformation of the proposed algorithm is significantly smaller than the other two methods, thus the forming precision is higher. Originality/value An improved medial axis path generation algorithm is proposed in this paper. The proposed method is applied to improve warpage deformation occurring in the SLM process. Seed point growth of distance transformation is used to extracted central axis. The result of extraction has a higher precision and wider scope of application than other methods to extract central axis, such as the Voronoi diagram-based method.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 821
Author(s):  
Hong Lu ◽  
Mingtian Ma ◽  
Shu Liu ◽  
Essa Alghannam ◽  
Yue Zang ◽  
...  

As an important form of additive manufacturing, welding is widely used in steel components welding work of construction, shipbuilding and other fields. In this study, an intelligent welding path generation algorithm based on multi-section interpolation is proposed in order to deal with non-standard multi-pass welding grooves which are difficult to be handled by automatic welding equipment in the construction site. Firstly, the non-standard grooves are classified and the reasons for their occurrence are discussed. Secondly, an automatic welding additive manufacturing system framework is discussed and an appropriate detection method is selected. Then, combining with the welding standard of non-standard grooves and the characteristics of the welding process, a multi-section interpolation-based welding path generation algorithm is proposed. Finally, a visual experiment platform was built to detection the typical non-standard groove and the welding experiment is implemented to verify the feasibility of the algorithm. According to the path generated by the algorithm, the welded steel components test plate meets the actual engineering standard after quality inspection. The experimental results and simulation results conclude the algorithm can be used to generate the welding path of the non-standard groove.


Sign in / Sign up

Export Citation Format

Share Document