Effects of Response-Signal Temporal Separation on Behavior Maintained Under Temporally Defined Schedules of Delayed Signaled Reinforcement

2010 ◽  
Vol 60 (1) ◽  
pp. 115-136
Author(s):  
Marco A. Pulido ◽  
Guillermo Martínez
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Jingzong Yang ◽  
Xiaodong Wang ◽  
Zao Feng ◽  
Guoyong Huang

Aiming at the nonstationary and nonlinear characteristics of acoustic impulse response signal in pipeline blockage and the difficulty in identifying the different degrees of blockage, this paper proposed a pattern recognition method based on local mean decomposition (LMD), information entropy theory, and extreme learning machine (ELM). Firstly, the impulse response signals of pipeline extracted in different operating conditions were decomposed with LMD method into a series of product functions (PFs). Secondly, based on the information entropy theory, the appropriate energy entropy, singular spectrum entropy, power spectrum entropy, and Hilbert spectrum entropy were extracted as the input feature vectors. Finally, ELM was introduced for classification of pipeline blockage. Through the analysis of acoustic impulse response signal collected under the condition of health and different degrees of blockages in pipeline, the results show that the proposed method can well characterize the state information. Also, it has a great advantage in terms of accuracy and it is time consuming when compared with the support vector machine (SVM) and BP (backpropagation) model.


2000 ◽  
Vol 132 (6) ◽  
pp. 877-887 ◽  
Author(s):  
B.S. Lindgren ◽  
S.E.R. Hoover ◽  
A.M. MacIsaac ◽  
C.I. Keeling ◽  
K.N. Slessor

AbstractThe effects of lineatin enantiomer ratios, lineatin release rate, and trap length on catches and the flight periods of three sympatric species of Trypodendron Stephens were investigated in field bioassays using multiple-funnel traps. The ambrosia beetle, Trypodendron betulae Swaine, was caught in similar numbers in baited traps and blank control traps, showing that this species does not respond to lineatin. Our results confirmed that Trypodendron lineatum (Olivier) is attracted only to (+)-lineatin. Trypodendron rufitarsus (Kirby) and Trypodendron retusum (LeConte) were shown to utilize lineatin and like T. lineatum were caught only when (+)-lineatin was present. These results indicate that lineatin does not govern reproductive isolation among these three species. There was no effect by (+)-lineatin release rate within the range tested. The flight of T. rufitarsus commenced earlier and ceased before the peak of the T. lineatum flight, suggesting that temporal separation may be an important component of reproductive isolation between these two species. The flight period of T. retusum was similar to that of T. lineatum. Host odours may aid in reproductive isolation of these two species. Enantiomer blend did not significantly affect sex ratio in any species; however, sex ratio differed among species, indicating that different species responded differently to the traps or that natural sex ratios differ. Catches of T. rufitarsus and T. retusum increased with trap length when pheromone release per trap was held constant and when release was held constant relative to trap length. Trap length and release rate did not affect sex ratio.


1988 ◽  
Vol 54 (1) ◽  
pp. 77-80 ◽  
Author(s):  
G.I. Groma ◽  
F. Ráksi ◽  
G. Szabó ◽  
G. Váró

1987 ◽  
Vol BME-34 (10) ◽  
pp. 771-778 ◽  
Author(s):  
Philip A. Parker ◽  
Ramachandran Gopalan

Laser Physics ◽  
2021 ◽  
Vol 31 (8) ◽  
pp. 085103
Author(s):  
Cecília L. A. V. Campos ◽  
Lúcio H. Acioli ◽  
Marcio H. G. de Miranda

Author(s):  
Kathryne M Allen ◽  
Angeles Salles ◽  
Sanwook Park ◽  
Mounya Elhilali ◽  
Cynthia F. Moss

The discrimination of complex sounds is a fundamental function of the auditory system. This operation must be robust in the presence of noise and acoustic clutter. Echolocating bats are auditory specialists that discriminate sonar objects in acoustically complex environments. Bats produce brief signals, interrupted by periods of silence, rendering echo snapshots of sonar objects. Sonar object discrimination requires that bats process spatially and temporally overlapping echoes to make split-second decisions. The mechanisms that enable this discrimination are not well understood, particularly in complex environments. We explored the neural underpinnings of sonar object discrimination in the presence of acoustic scattering caused by physical clutter. We performed electrophysiological recordings in the inferior colliculus of awake big brown bats, to broadcasts of pre-recorded echoes from physical objects. We acquired single unit responses to echoes and discovered a sub-population of IC neurons that encode acoustic features that can be used to discriminate between sonar objects. We further investigated the effects of environmental clutter on this population's encoding of acoustic features. We discovered that the effect of background clutter on sonar object discrimination is highly variable and depends on object properties and target-clutter spatio-temporal separation. In many conditions, clutter impaired discrimination of sonar objects. However, in some instances clutter enhanced acoustic features of echo returns, enabling higher levels of discrimination. This finding suggests that environmental clutter may augment acoustic cues used for sonar target discrimination and provides further evidence in a growing body of literature that noise is not universally detrimental to sensory encoding.


1991 ◽  
Vol 53 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Rosa M. S�nchez-Casas ◽  
Jos� E. Garc�a-Albea ◽  
Dianne C. Bradley

Endocrinology ◽  
2005 ◽  
Vol 146 (8) ◽  
pp. 3577-3588 ◽  
Author(s):  
Mark D. Aupperlee ◽  
Kyle T. Smith ◽  
Anastasia Kariagina ◽  
Sandra Z. Haslam

Abstract Progesterone is a potent mitogen in the mammary gland. Based on studies using cells and animals engineered to express progesterone receptor (PR) isoforms A or B, PRA and PRB are believed to have different functions. Using an immunohistochemical approach with antibodies specific for PRA only or PRB only, we show that PRA and PRB expression in mammary epithelial cells is temporally and spatially separated during normal mammary gland development in the BALB/c mouse. In the virgin mammary gland when ductal development is active, the only PR protein isoform expressed was PRA. PRA levels were significantly lower during pregnancy, suggesting a minor role at this stage of development. PRB was abundantly expressed only during pregnancy, during alveologenesis. PRA and PRB colocalization occurred in only a small percentage of cells. During pregnancy there was extensive colocalization of PRB with 5-bromo-2′-deoxyuridine (BrdU) and cyclin D1; 95% of BrdU-positive cells and 83% of cyclin D1-positive cells expressed PRB. No colocalization of PRA with either BrdU or cyclin D1 was observed at pregnancy. In the virgin gland, PRA colocalization with BrdU or cyclin D1 was low; only 27% of BrdU-positive cells and 4% of cyclin D1-positive cells expressed PRA. The implication of these findings is that different actions of progesterone are mediated in PRB positive vs. PRA-positive cells in vivo. The spatial and temporal separation of PR isoform expression in mouse mammary gland provides a unique opportunity to determine the specific functions of PRA vs. PRB in vivo.


2018 ◽  
Vol 22 (6) ◽  
pp. 3493-3513 ◽  
Author(s):  
Karin Mostbauer ◽  
Roland Kaitna ◽  
David Prenner ◽  
Markus Hrachowitz

Abstract. Debris flows represent frequent hazards in mountain regions. Though significant effort has been made to predict such events, the trigger conditions as well as the hydrologic disposition of a watershed at the time of debris flow occurrence are not well understood. Traditional intensity-duration threshold techniques to establish trigger conditions generally do not account for distinct influences of rainfall, snowmelt, and antecedent moisture. To improve our knowledge on the connection between debris flow initiation and the hydrologic system at a regional scale, this study explores the use of a semi-distributed conceptual rainfall–runoff model, linking different system variables such as soil moisture, snowmelt, or runoff with documented debris flow events in the inner Pitztal watershed, Austria. The model was run on a daily basis between 1953 and 2012. Analysing a range of modelled system state and flux variables at days on which debris flows occurred, three distinct dominant trigger mechanisms could be clearly identified. While the results suggest that for 68 % (17 out of 25) of the observed debris flow events during the study period high-intensity rainfall was the dominant trigger, snowmelt was identified as the dominant trigger for 24 % (6 out of 25) of the observed debris flow events. In addition, 8 % (2 out of 25) of the debris flow events could be attributed to the combined effects of low-intensity, long-lasting rainfall and transient storage of this water, causing elevated antecedent soil moisture conditions. The results also suggest a relatively clear temporal separation between the distinct trigger mechanisms, with high-intensity rainfall as a trigger being limited to mid- and late summer. The dominant trigger in late spring/early summer is snowmelt. Based on the discrimination between different modelled system states and fluxes and, more specifically, their temporally varying importance relative to each other, this exploratory study demonstrates that already the use of a relatively simple hydrological model can prove useful to gain some more insight into the importance of distinct debris flow trigger mechanisms. This highlights in particular the relevance of snowmelt contributions and the switch between mechanisms during early to mid-summer in snow-dominated systems.


Coatings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 5 ◽  
Author(s):  
César Masse de la Huerta ◽  
Viet Nguyen ◽  
Jean-Marc Dedulle ◽  
Daniel Bellet ◽  
Carmen Jiménez ◽  
...  

Within the materials deposition techniques, Spatial Atomic Layer Deposition (SALD) is gaining momentum since it is a high throughput and low-cost alternative to conventional atomic layer deposition (ALD). SALD relies on a physical separation (rather than temporal separation, as is the case in conventional ALD) of gas-diluted reactants over the surface of the substrate by a region containing an inert gas. Thus, fluid dynamics play a role in SALD since precursor intermixing must be avoided in order to have surface-limited reactions leading to ALD growth, as opposed to chemical vapor deposition growth (CVD). Fluid dynamics in SALD mainly depends on the geometry of the reactor and its components. To quantify and understand the parameters that may influence the deposition of films in SALD, the present contribution describes a Computational Fluid Dynamics simulation that was coupled, using Comsol Multiphysics®, with concentration diffusion and temperature-based surface chemical reactions to evaluate how different parameters influence precursor spatial separation. In particular, we have used the simulation of a close-proximity SALD reactor based on an injector manifold head. We show the effect of certain parameters in our system on the efficiency of the gas separation. Our results show that the injector head-substrate distance (also called deposition gap) needs to be carefully adjusted to prevent precursor intermixing and thus CVD growth. We also demonstrate that hindered flow due to a non-efficient evacuation of the flows through the head leads to precursor intermixing. Finally, we show that precursor intermixing can be used to perform area-selective deposition.


Sign in / Sign up

Export Citation Format

Share Document