Some problems concerning the measurement of near-surface streaming potentials as well as of surface temperatures for the detection of near-surface flow phenomena

Author(s):  
H. Militzer ◽  
Chr Oelsner
Author(s):  
Lena Pfister ◽  
Karl Lapo ◽  
Larry Mahrt ◽  
Christoph K. Thomas

AbstractIn the stable boundary layer, thermal submesofronts (TSFs) are detected during the Shallow Cold Pool experiment in the Colorado plains, Colorado, USA in 2012. The topography induces TSFs by forming two different air layers converging on the valley-side wall while being stacked vertically above the valley bottom. The warm-air layer is mechanically generated by lee turbulence that consistently elevates near-surface temperatures, while the cold-air layer is thermodynamically driven by radiative cooling and the corresponding cold-air drainage decreases near-surface temperatures. The semi-stationary TSFs can only be detected, tracked, and investigated in detail when using fibre-optic distributed sensing (FODS), as point observations miss TSFs most of the time. Neither the occurrence of TSFs nor the characteristics of each air layer are connected to a specific wind or thermal regime. However, each air layer is characterized by a specific relationship between the wind speed and the friction velocity. Accordingly, a single threshold separating different flow regimes within the boundary layer is an oversimplification, especially during the occurrence of TSFs. No local forcings or their combination could predict the occurrence of TSFs except that they are less likely to occur during stronger near-surface or synoptic-scale flow. While classical conceptualizations and techniques of the boundary layer fail in describing the formation of TSFs, the use of spatially continuous data obtained from FODS provide new insights. Future studies need to incorporate spatially continuous data in the horizontal and vertical planes, in addition to classic sensor networks of sonic anemometry and thermohygrometers to fully characterize and describe boundary-layer phenomena.


2021 ◽  
Author(s):  
Stefano Materia ◽  
Constantin Ardilouze ◽  
Chloé Prodhomme ◽  
Markus G. Donat ◽  
Marianna Benassi ◽  
...  

AbstractLand surface and atmosphere are interlocked by the hydrological and energy cycles and the effects of soil water-air coupling can modulate near-surface temperatures. In this work, three paired experiments were designed to evaluate impacts of different soil moisture initial and boundary conditions on summer temperatures in the Mediterranean transitional climate regime region. In this area, evapotranspiration is not limited by solar radiation, rather by soil moisture, which therefore controls the boundary layer variability. Extremely dry, extremely wet and averagely humid ground conditions are imposed to two global climate models at the beginning of the warm and dry season. Then, sensitivity experiments, where atmosphere is alternatively interactive with and forced by land surface, are launched. The initial soil state largely affects summer near-surface temperatures: dry soils contribute to warm the lower atmosphere and exacerbate heat extremes, while wet terrains suppress thermal peaks, and both effects last for several months. Land-atmosphere coupling proves to be a fundamental ingredient to modulate the boundary layer state, through the partition between latent and sensible heat fluxes. In the coupled runs, early season heat waves are sustained by interactive dry soils, which respond to hot weather conditions with increased evaporative demand, resulting in longer-lasting extreme temperatures. On the other hand, when wet conditions are prescribed across the season, the occurrence of hot days is suppressed. The land surface prescribed by climatological precipitation forcing causes a temperature drop throughout the months, due to sustained evaporation of surface soil water. Results have implications for seasonal forecasts on both rain-fed and irrigated continental regions in transitional climate zones.


2016 ◽  
Author(s):  
Regula Frauenfelder ◽  
Ketil Isaksen ◽  
Jeannette Nötzli ◽  
Matthew J. Lato

Abstract. In June 2008, a rockslide detached in the northeast facing slope of Polvartinden, a high-alpine mountain in Signaldalen, Northern Norway. Here, we report on the observed and modelled past and present near-surface temperature regime close to the failure zone, as well as on a subsequent simulation of the subsurface temperature regime, and on initial geomechanical mapping based on laser scanning. The volume of the rockslide was estimated to be approximately 500 000 m3. The depth to the actual failure surface was found to range from 40 m at the back of the failure zone to 0 m at its toe. Visible in-situ ice was observed in the failure zone just after the rockslide. Between September 2009 and August 2013 ground surface temperatures were measured with miniature temperature data loggers at fourteen different localities close to the original failure zone along the northern ridge of Polvartinden, and in the valley floor. The results from these measurements and from a basic three-dimensional heat conduction model suggest that the lower altitudinal limit of permafrost at present is at 600–650 m a.s.l., which corresponds to the upper limit of the failure zone. A coupling of our in-situ data with regional climate data since 1958 suggests a general gradual warming and that a period with highest mean near surface temperatures on record ended four months before the Signaldalen rockslide detached. A comparison with a transient permafrost model run at 10 m depth, representative for areas where snow accumulates, strengthen this findings, which are also in congruence with measurements in nearby permafrost boreholes. It is likely that permafrost in and near the failure zone is presently subject to degradation. This degradation, in combination with the extreme warm year antecedent to the rock failure, is seen to have played an important role in the detaching of the Signaldalen rockslide.


2018 ◽  
Vol 59 (3) ◽  
Author(s):  
C. G. Borchetta ◽  
A. Martin ◽  
S. C. C. Bailey

Author(s):  
M. Béhaegel ◽  
P. Sailhac ◽  
G. Marquis ◽  
E. Falgas ◽  
J. Ledo

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3330
Author(s):  
Milan Sedlář ◽  
Pavel Procházka ◽  
Martin Komárek ◽  
Václav Uruba ◽  
Vladislav Skála

This article presents results of the experimental research and numerical simulations of the flow in a pumping system’s discharge object with the welded siphon. The laboratory simplified model was used in the study. Two stationary flow regimes characterized by different volume flow rates and water level heights have been chosen. The study concentrates mainly on the regions below and behind the siphon outlet. The mathematical modelling using advanced turbulence models has been performed. The free-surface flow has been carried out by means of the volume-of-fluid method. The experimental results obtained by the particle image velocimetry method have been used for the mathematical model validation. The evolution and interactions of main flow structures are analyzed using visualizations and the spectral analysis. The presented results show a good agreement of the measured and calculated complex flow topology and give a deep insight into the flow structures below and behind the siphon outlet. The presented methodology and results can increase the applicability and reliability of the numerical tools used for the design of the pump and turbine stations and their optimization with respect to the efficiency, lifetime and environmental demands.


Sign in / Sign up

Export Citation Format

Share Document