scholarly journals Stability of the Higgs sector in a flavor-inspired multi-scale model

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Lukas Allwicher ◽  
Gino Isidori ◽  
Anders Eller Thomsen

Abstract We analyze the stability of the Higgs sector of a three-site model with flavor-non-universal gauge interactions, whose spectrum of non-Standard-Model states spans three orders of magnitude. This model is inspired by deconstructing a five-dimensional theory where the generation index is in one-to-one relation to the position in the fifth dimension. It provides a good description of masses and mixing of the SM fermions in terms of scale hierarchies. We demonstrate that, within this construction, the mass term of the SM-like Higgs does not receive large corrections proportional to the highest mass scales. The model suffers only of the unavoidable “little hierarchy problem” between the electroweak scale and the lightest NP states, which are expected to be at the TeV scale.

2015 ◽  
Vol 799-800 ◽  
pp. 629-634
Author(s):  
Ke Zhi Yu ◽  
Hai Zhang ◽  
Yan Ling Liu

The energy minimization multi-scale model is applied to the plane jet. The stability conditions of plane jets is adopted to predict the velocity distribution of plane jet. When the ratio of total dissipation to viscous dissipation tends to the maximum is used as the optimization condition and entrancement factor is considered as a constant, the Gauss velocity distribution can be concluded in the plane jet.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Michael Ratz ◽  
Patrick K. S. Vaudrevange

We discuss singlet extensions of the MSSM withZ4Rsymmetry. We show that holomorphic zeros can avoid a potentially large coefficient of the term linear in the singlet. The emerging model has both an effectiveμterm and a supersymmetric mass term for the singletμNwhich are controlled by the gravitino mass. Theμterm turns out to be suppressed againstμNby about one or two orders of magnitude. We argue that this class of models might provide us with a solution to the little hierarchy problem of the MSSM.


2020 ◽  
Vol 64 (2) ◽  
pp. 20506-1-20506-7
Author(s):  
Min Zhu ◽  
Rongfu Zhang ◽  
Pei Ma ◽  
Xuedian Zhang ◽  
Qi Guo

Abstract Three-dimensional (3D) reconstruction is extensively used in microscopic applications. Reducing excessive error points and achieving accurate matching of weak texture regions have been the classical challenges for 3D microscopic vision. A Multi-ST algorithm was proposed to improve matching accuracy. The process is performed in two main stages: scaled microscopic images and regularized cost aggregation. First, microscopic image pairs with different scales were extracted according to the Gaussian pyramid criterion. Second, a novel cost aggregation approach based on the regularized multi-scale model was implemented into all scales to obtain the final cost. To evaluate the performances of the proposed Multi-ST algorithm and compare different algorithms, seven groups of images from the Middlebury dataset and four groups of experimental images obtained by a binocular microscopic system were analyzed. Disparity maps and reconstruction maps generated by the proposed approach contained more information and fewer outliers or artifacts. Furthermore, 3D reconstruction of the plug gauges using the Multi-ST algorithm showed that the error was less than 0.025 mm.


2019 ◽  
Vol 125 (23) ◽  
pp. 235104 ◽  
Author(s):  
Sangyup Lee ◽  
Oishik Sen ◽  
Nirmal Kumar Rai ◽  
Nicholas J. Gaul ◽  
K. K. Choi ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2454
Author(s):  
Yue Sun ◽  
Yanze Yu ◽  
Jinhao Guo ◽  
Minghai Zhang

Single-scale frameworks are often used to analyze the habitat selections of species. Research on habitat selection can be significantly improved using multi-scale models that enable greater in-depth analyses of the scale dependence between species and specific environmental factors. In this study, the winter habitat selection of red deer in the Gogostaihanwula Nature Reserve, Inner Mongolia, was studied using a multi-scale model. Each selected covariate was included in multi-scale models at their “characteristic scale”, and we used an all subsets approach and model selection framework to assess habitat selection. The results showed that: (1) Univariate logistic regression analysis showed that the response scale of red deer to environmental factors was different among different covariate. The optimal scale of the single covariate was 800–3200 m, slope (SLP), altitude (ELE), and ratio of deciduous broad-leaved forests were 800 m in large scale, except that the farmland ratio was 200 m in fine scale. The optimal scale of road density and grassland ratio is both 1600 m, and the optimal scale of net forest production capacity is 3200 m; (2) distance to forest edges, distance to cement roads, distance to villages, altitude, distance to all road, and slope of the region were the most important factors affecting winter habitat selection. The outcomes of this study indicate that future studies on the effectiveness of habitat selections will benefit from multi-scale models. In addition to increasing interpretive and predictive capabilities, multi-scale habitat selection models enhance our understanding of how species respond to their environments and contribute to the formulation of effective conservation and management strategies for ungulata.


Author(s):  
Xiuhua Hu ◽  
Yuan Chen ◽  
Yan Hui ◽  
Yingyu Liang ◽  
Guiping Li ◽  
...  

Aiming to tackle the problem of tracking drift easily caused by complex factors during the tracking process, this paper proposes an improved object tracking method under the framework of kernel correlation filter. To achieve discriminative information that is not sensitive to object appearance change, it combines dimensionality-reduced Histogram of Oriented Gradients features and Lab color features, which can be used to exploit the complementary characteristics robustly. Based on the idea of multi-resolution pyramid theory, a multi-scale model of the object is constructed, and the optimal scale for tracking the object is found according to the confidence maps’ response peaks of different sizes. For the case that tracking failure can easily occur when there exists inappropriate updating in the model, it detects occlusion based on whether the occlusion rate of the response peak corresponding to the best object state is less than a set threshold. At the same time, Kalman filter is used to record the motion feature information of the object before occlusion, and predict the state of the object disturbed by occlusion, which can achieve robust tracking of the object affected by occlusion influence. Experimental results show the effectiveness of the proposed method in handling various internal and external interferences under challenging environments.


2018 ◽  
Vol 233 ◽  
pp. 00025
Author(s):  
P.V. Polydoropoulou ◽  
K.I. Tserpes ◽  
Sp.G. Pantelakis ◽  
Ch.V. Katsiropoulos

In this work a multi-scale model simulating the effect of the dispersion, the waviness as well as the agglomerations of MWCNTs on the Young’s modulus of a polymer enhanced with 0.4% MWCNTs (v/v) has been developed. Representative Unit Cells (RUCs) have been employed for the determination of the homogenized elastic properties of the MWCNT/polymer. The elastic properties computed by the RUCs were assigned to the Finite Element (FE) model of a tension specimen which was used to predict the Young’s modulus of the enhanced material. Furthermore, a comparison with experimental results obtained by tensile testing according to ASTM 638 has been made. The results show a remarkable decrease of the Young’s modulus for the polymer enhanced with aligned MWCNTs due to the increase of the CNT agglomerations. On the other hand, slight differences on the Young’s modulus have been observed for the material enhanced with randomly-oriented MWCNTs by the increase of the MWCNTs agglomerations, which might be attributed to the low concentration of the MWCNTs into the polymer. Moreover, the increase of the MWCNTs waviness led to a significant decrease of the Young’s modulus of the polymer enhanced with aligned MWCNTs. The experimental results in terms of the Young’s modulus are predicted well by assuming a random dispersion of MWCNTs into the polymer.


2020 ◽  
Vol 20 (3) ◽  
pp. 406-412
Author(s):  
Limei Jiang ◽  
Xin Feng ◽  
Hao Ming ◽  
Qiong Yang ◽  
Jie Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document