scholarly journals A new spin on the Weak Gravity Conjecture

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Lars Aalsma ◽  
Alex Cole ◽  
Gregory J. Loges ◽  
Gary Shiu

Abstract The mild form of the Weak Gravity Conjecture states that quantum or higher-derivative corrections should decrease the mass of large extremal charged black holes at fixed charge. This allows extremal black holes to decay, unless protected by a symmetry (such as supersymmetry). We reformulate this conjecture as an integrated condition on the effective stress tensor capturing the effect of quantum or higher-derivative corrections. In addition to charged black holes, we also consider rotating BTZ black holes and show that this condition is satisfied as a consequence of the c-theorem, proving a spinning version of the Weak Gravity Conjecture. We also apply our results to a five-dimensional boosted black string with higher-derivative corrections. The boosted black string has a BTZ×S2 near-horizon geometry and, after Kaluza-Klein reduction, describes a four-dimensional charged black hole. Combining the spinning and charged Weak Gravity Conjecture we obtain positivity bounds on the five-dimensional Wilson coefficients that are stronger than those obtained from charged black holes alone.

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mehrdad Mirbabayi

Abstract We propose a Euclidean preparation of an asymptotically AdS2 spacetime that contains an inflating dS2 bubble. The setup can be embedded in a four dimensional theory with a Minkowski vacuum and a false vacuum. AdS2 approximates the near horizon geometry of a two-sided near-extremal Reissner-Nordström black hole, and the two sides can connect to the same Minkowski asymptotics to form a topologically nontrivial worm- hole geometry. Likewise, in the false vacuum the near-horizon geometry of near-extremal black holes is approximately dS2 times 2-sphere. We interpret the Euclidean solution as describing the decay of an excitation inside the wormhole to a false vacuum bubble. The result is an inflating region inside a non-traversable asymptotically Minkowski wormhole.


2011 ◽  
Vol 26 (22) ◽  
pp. 1601-1611 ◽  
Author(s):  
JØRGEN RASMUSSEN

We consider Kerr–Newman–AdS–dS black holes near extremality and work out the near-horizon geometry of these near-extremal black holes. We identify the exact U (1)L× U (1)R isometries of the near-horizon geometry and provide boundary conditions enhancing them to a pair of commuting Virasoro algebras. The conserved charges of the corresponding asymptotic symmetries are found to be well-defined and nonvanishing and to yield central charges cL≠0 and cR = 0. The Cardy formula subsequently reproduces the Bekenstein–Hawking entropy of the black hole. This suggests that the near-extremal Kerr–Newman–AdS–dS black hole is holographically dual to a non-chiral two-dimensional conformal field theory.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Niloofar Abbasvandi ◽  
Masoumeh Tavakoli ◽  
Robert B. Mann

Abstract We investigate the thermodynamic behaviour of Lorentzian Dyonic Taub-NUT Black Hole spacetimes. We consider two possibilities in their description: one in which their entropy is interpreted to be one quarter of the horizon area (the horizon entropy), and another in which the Misner string also contributes to the entropy (the Noether charge entropy). We find that there can be as many as three extremal black holes (or as few as zero) depending on the choice of parameters, and that the dependence of the free energy on temperature — and the resultant phase behaviour — depends very much on which of these situations holds. Some of the phase behaviour we observe holds regardless of which interpretation of the entropy holds. However another class of phase transition structures occurs only if the Noether charge interpretation of the entropy is adopted.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Pablo A. Cano ◽  
Ángel Murcia

Abstract We identify a set of higher-derivative extensions of Einstein-Maxwell theory that allow for spherically symmetric charged solutions characterized by a single metric function f (r) = −gtt = 1/grr. These theories are a non-minimally coupled version of the recently constructed Generalized Quasitopological gravities and they satisfy a number of properties that we establish. We study magnetically-charged black hole solutions in these new theories and we find that for some of them the equations of motion can be fully integrated, enabling us to obtain analytic solutions. In those cases we show that, quite generally, the singularity at the core of the black hole is removed by the higher-derivative corrections and that the solution describes a globally regular geometry. In other cases, the equations are reduced to a second order equation for f (r). Nevertheless, for all the theories it is possible to study the thermodynamic properties of charged black holes analytically. We show that the first law of thermodynamics holds exactly and that the Euclidean and Noether-charge methods provide equivalent results. We then study extremal black holes, focusing on the corrections to the extremal charge-to-mass ratio at a non-perturbative level. We observe that in some theories there are no extremal black holes below certain mass. We also show the existence of theories for which extremal black holes do not represent the minimal mass state for a given charge. The implications of these findings for the evaporation process of black holes are discussed.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050193
Author(s):  
Cai-Ying Shao ◽  
Yu Hu ◽  
Yu-Jie Tan ◽  
Cheng-Gang Shao ◽  
Kai Lin ◽  
...  

In this paper, we study the quasinormal modes of the massless Dirac field for charged black holes in Rastall gravity. The spherically symmetric black hole solutions in question are characterized by the presence of a power-Maxwell field, surrounded by the quintessence fluid. The calculations are carried out by employing the WKB approximations up to the 13th-order, as well as the matrix method. The temporal evolution of the quasinormal modes is investigated by using the finite difference method. Through numerical simulations, the properties of the quasinormal frequencies are analyzed, including those for the extremal black holes. Among others, we explore the case of a second type of extremal black holes regarding the Nariai solution, where the cosmical and event horizon coincide. The results obtained by the WKB approaches are found to be mostly consistent with those by the matrix method. It is observed that the magnitudes of both real and imaginary parts of the quasinormal frequencies increase with increasing [Formula: see text], the spin–orbit quantum number. Also, the roles of the parameters [Formula: see text] and [Formula: see text], associated with the electric charge and the equation of state of the quintessence field, respectively, are investigated regarding their effects on the quasinormal frequencies. The magnitude of the electric charge is found to sensitively affect the time scale of the first stage of quasinormal oscillations, after which the temporal oscillations become stabilized. It is demonstrated that the black hole solutions for Rastall gravity in asymptotically flat spacetimes are equivalent to those in Einstein gravity, featured by different asymptotical spacetime properties. As one of its possible consequences, we also investigate the behavior of the late-time tails of quasinormal models in the present model. It is found that the asymptotical behavior of the late-time tails of quasinormal modes in Rastall theory is governed by the asymptotical properties of the spacetimes of their counterparts in Einstein gravity.


2017 ◽  
Vol 26 (04) ◽  
pp. 1750036
Author(s):  
S. Sadeghian ◽  
A. Shafiekhani

Recently [Formula: see text]-dimensional spherically symmetric charged Vaidya black hole solution has been constructed. We observe that this nonstationary solution admits extremal limit and study its near horizon geometry. We show that the symmetry of the near horizon geometry is [Formula: see text]. Our analysis shows that the theorems for the near horizon geometry of stationary extremal black holes, may be extended to nonstationary cases.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950248 ◽  
Author(s):  
Koray Düztaş ◽  
Mubasher Jamil

In this work, we attempt to overcharge extremal and nearly extremal charged black holes in string theory, known as the Garfinkle–Horowitz–Strominger solution. We first show that extremal black holes cannot be overcharged analogous to the case of Reissner–Nordström (RN) black holes. Contrary to their analog in general relativity, nearly extremal black holes can neither be overcharged beyond extremality, nor can they be driven to extremality by the interaction with test particles. Therefore, the analysis in this work also implies that the third law of black hole thermodynamics holds for the relevant charged black holes in string theory perturbed by test particles. This can be interpreted as a stronger version of the third law since one can drop out the continuity proviso for the relevant process.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yi Ling ◽  
Yuxuan Liu ◽  
Zhuo-Yu Xian

Abstract We study the information paradox for the eternal black hole with charges on a doubly-holographic model in general dimensions, where the charged black hole on a Planck brane is coupled to the baths on the conformal boundaries. In the case of weak tension, the brane can be treated as a probe such that its backreaction to the bulk is negligible. We analytically calculate the entanglement entropy of the radiation and obtain the Page curve with the presence of an island on the brane. For the near-extremal black holes, the growth rate is linear in the temperature. Taking both Dvali-Gabadadze-Porrati term and nonzero tension into account, we obtain the numerical solution with backreaction in four-dimensional spacetime and find the quantum extremal surface at t = 0. To guarantee that a Page curve can be obtained in general cases, we propose two strategies to impose enough degrees of freedom on the brane such that the black hole information paradox can be properly described by the doubly-holographic setup.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Ryotaku Suzuki ◽  
Shinya Tomizawa

Abstract Using the large D effective theory approach, we construct a static solution of non-extremal and squashed black holes with/without an electric charge, which describes a spherical black hole in a Kaluza-Klein spacetime with a compactified dimension. The asymptotic background with a compactified dimension and near-horizon geometry are analytically solved by the 1/D expansion. Particularly, our work demonstrates that the large D limit can be applied to solve the non-trivial background with a compactified direction, which leads to a first-order flow equation. Moreover, we show that the extremal limit consistently reproduces the known extremal result.


2019 ◽  
Vol 34 (23) ◽  
pp. 1950184 ◽  
Author(s):  
Muhammad Rizwan ◽  
Muhammad Zubair Ali ◽  
Ali Övgün

In this paper, we study the tunneling of charged fermions from the stationary axially symmetric black holes using the generalized uncertainty principle (GUP) via Wentzel, Kramers, and Brillouin (WKB) method. The emission rate of the charged fermions and corresponding modified Hawking temperature of Kerr–Newman black hole, Einstein–Maxwell-dilaton-axion (EMDA) black hole, Kaluza–Klein dilaton black hole, and then, charged rotating black string are obtained and we show that the corrected thermal spectrum is not purely thermal because of the minimal scale length which cause the black hole’s remnant.


Sign in / Sign up

Export Citation Format

Share Document