scholarly journals Unified framework for B-anomalies, muon g − 2 and neutrino masses

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
K. S. Babu ◽  
P. S. Bhupal Dev ◽  
Sudip Jana ◽  
Anil Thapa

Abstract We present a model of radiative neutrino masses which also resolves anomalies reported in B-meson decays, $$ {R}_{D^{\left(\ast \right)}} $$ R D ∗ and $$ {R}_{K^{\left(\ast \right)}} $$ R K ∗ , as well as in muon g − 2 measurement, ∆aμ. Neutrino masses arise in the model through loop diagrams involving TeV-scale leptoquark (LQ) scalars R2 and S3. Fits to neutrino oscillation parameters are obtained satisfying all flavor constraints which also explain the anomalies in $$ {R}_{D^{\left(\ast \right)}} $$ R D ∗ , $$ {R}_{K^{\left(\ast \right)}} $$ R K ∗ and ∆aμ within 1 σ. An isospin-3/2 Higgs quadruplet plays a crucial role in generating neutrino masses; we point out that the doubly-charged scalar contained therein can be produced in the decays of the S3 LQ, which enhances its reach to 1.1 (6.2) TeV at $$ \sqrt{s} $$ s = 14 TeV high-luminosity LHC ($$ \sqrt{s} $$ s = 100 TeV FCC-hh). We also present flavor-dependent upper limits on the Yukawa couplings of the LQs to the first two family fermions, arising from non-resonant dilepton (pp → ℓ+ℓ−) processes mediated by t-channel LQ exchange, which for 1 TeV LQ mass, are found to be in the range (0.15 − 0.36). These limits preclude any explanation of $$ {R}_{D^{\left(\ast \right)}} $$ R D ∗ through LQ-mediated B-meson decays involving νe or νμ in the final state. We also find that the same Yukawa couplings responsible for the chirally-enhanced contribution to ∆aμ give rise to new contributions to the SM Higgs decays to muon and tau pairs, with the modifications to the corresponding branching ratios being at (2–6)% level, which could be tested at future hadron colliders, such as HL-LHC and FCC-hh.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Tobias Felkl ◽  
Juan Herrero-García ◽  
Michael A. Schmidt

Abstract We consider the generation of neutrino masses via a singly-charged scalar singlet. Under general assumptions we identify two distinct structures for the neutrino mass matrix. This yields a constraint for the antisymmetric Yukawa coupling of the singly-charged scalar singlet to two left-handed lepton doublets, irrespective of how the breaking of lepton-number conservation is achieved. The constraint disfavours large hierarchies among the Yukawa couplings. We study the implications for the phenomenology of lepton-flavour universality, measurements of the W-boson mass, flavour violation in the charged-lepton sector and decays of the singly-charged scalar singlet. We also discuss the parameter space that can address the Cabibbo Angle Anomaly.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Manoel M. Ferreira ◽  
Tessio B. de Melo ◽  
Sergey Kovalenko ◽  
Paulo R. D. Pinheiro ◽  
Farinaldo S. Queiroz

AbstractNeutrinos are massless in the Standard Model. The most popular mechanism to generate neutrino masses are the type I and type II seesaw, where right-handed neutrinos and a scalar triplet are augmented to the Standard Model, respectively. In this work, we discuss a model where a type I + II seesaw mechanism naturally arises via spontaneous symmetry breaking of an enlarged gauge group. Lepton flavor violation is a common feature in such setup and for this reason, we compute the model contribution to the $$\mu \rightarrow e\gamma $$μ→eγ and $$\mu \rightarrow 3e$$μ→3e decays. Moreover, we explore the connection between the neutrino mass ordering and lepton flavor violation in perspective with the LHC, HL-LHC and HE-LHC sensitivities to the doubly charged scalar stemming from the Higgs triplet. Our results explicitly show the importance of searching for signs of lepton flavor violation in collider and muon decays. The conclusion about which probe yields stronger bounds depends strongly on the mass ordering adopted, the absolute neutrino masses and which much decay one considers. In the 1–5 TeV mass region of the doubly charged scalar, lepton flavor violation experiments and colliders offer orthogonal and complementary probes. Thus if a signal is observed in one of the two new physics searches, the other will be able to assess whether it stems from a seesaw framework.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1240
Author(s):  
Bartosz Dziewit ◽  
Magdalena Kordiaczyńska ◽  
Tripurari Srivastava

We investigate an extension of the Standard Model with one additional triplet of scalar bosons. Altogether, the model contains four Higgs bosons. We analyze the associated production of the doubly charged scalar with the Standard Model gauge bosons and the remaining Higgs bosons of the model, which are: the light (SM) and heavy neutral scalars and a singly charged scalar. We estimate, in the context of the present (HL–LHC) and future (FCC–hh) hadron colliders, the most promising processes in which a single produced doubly charged Higgs boson is involved.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Pilar Coloma ◽  
Enrique Fernández-Martínez ◽  
Manuel González-López ◽  
Josu Hernández-García ◽  
Zarko Pavlovic

AbstractThe simplest extension of the SM to account for the observed neutrino masses and mixings is the addition of at least two singlet fermions (or right-handed neutrinos). If their masses lie at or below the GeV scale, such new fermions would be produced in meson decays. Similarly, provided they are sufficiently heavy, their decay channels may involve mesons in the final state. Although the couplings between mesons and heavy neutrinos have been computed previously, significant discrepancies can be found in the literature. The aim of this paper is to clarify such discrepancies and provide consistent expressions for all relevant effective operators involving mesons with masses up to 2 GeV. Moreover, the effective Lagrangians obtained for both the Dirac and Majorana scenarios are made publicly available as FeynRules models so that fully differential event distributions can be easily simulated. As an application of our setup, we numerically compute the expected sensitivity of the DUNE near detector to these heavy neutral leptons.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Guillem Domènech ◽  
Mark Goodsell ◽  
Christof Wetterich

Abstract A general prediction from asymptotically safe quantum gravity is the approximate vanishing of all quartic scalar couplings at the UV fixed point beyond the Planck scale. A vanishing Higgs doublet quartic coupling near the Planck scale translates into a prediction for the ratio between the mass of the Higgs boson MH and the top quark Mt. If only the standard model particles contribute to the running of couplings below the Planck mass, the observed MH∼ 125 GeV results in the prediction for the top quark mass Mt∼ 171 GeV, in agreement with recent measurements. In this work, we study how the asymptotic safety prediction for the top quark mass is affected by possible physics at an intermediate scale. We investigate the effect of an SU(2) triplet scalar and right-handed neutrinos, needed to explain the tiny mass of left-handed neutrinos. For pure seesaw II, with no or very heavy right handed neutrinos, the top mass can increase to Mt ∼ 172.5 GeV for a triplet mass of M∆ ∼ 108GeV. Right handed neutrino masses at an intermediate scale increase the uncertainty of the predictions of Mt due to unknown Yukawa couplings of the right-handed neutrinos and a cubic interaction in the scalar potential. For an appropriate range of Yukawa couplings there is no longer an issue of vacuum stability.


2018 ◽  
Vol 2018 ◽  
pp. 1-20
Author(s):  
Azeem Mir ◽  
Farida Tahir ◽  
Shakeel Mahmood ◽  
Shi- Hai Dong

We have studied phenomenological implication of R-parity violating (Rp) Minimal Supersymmetric Model (MSSM) via analyses of pure leptonic (M→νν¯) and semileptonic decays of pseudoscalar mesons (M→Xνν¯). These analyses involve comparison between theoretical predictions made by Rp MSSM and the Standard Model (SM) with the experimental results like branching fractions (Br) of the said process. We have found, in general, that Rp contribution dominates over the SM contribution, i.e., by a factor of 10 for the pure leptonic decays of KL,S and by 102 and 104 in case of Bs and Bd, respectively. Furthermore, the limits obtained on Rp Yukawa couplings (λαkβ′λαkγ′⁎) by using Br  (M→Xνν¯) are used to calculate Br  (M→νν¯). This demonstrates the role of Rp MSSM as a viable model for the study of new physics contribution in rare decays at places like Super B factories, KOTO (J-PARC) and NA62 at CERN.


2018 ◽  
Vol 929 ◽  
pp. 193-206 ◽  
Author(s):  
Takaaki Nomura ◽  
Hiroshi Okada ◽  
Hiroshi Yokoya

2014 ◽  
Vol 2014 (2) ◽  
Author(s):  
Avinanda Chaudhuri ◽  
Walter Grimus ◽  
Biswarup Mukhopadhyaya

2021 ◽  
Vol 81 (3) ◽  
Author(s):  
R. Aaij ◽  
◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
B. Adeva ◽  
...  

AbstractA search is performed for heavy neutrinos in the decay of a W boson into two muons and a jet. The data set corresponds to an integrated luminosity of approximately $$3.0\, \text {fb} ^{-1} $$ 3.0 fb - 1 of proton–proton collision data at centre-of-mass energies of 7 and $$8\, \text {TeV} $$ 8 TeV collected with the LHCb experiment. Both same-sign and opposite-sign muons in the final state are considered. Data are found to be consistent with the expected background. Upper limits on the coupling of a heavy neutrino with the Standard Model neutrino are set at $$95\%$$ 95 % confidence level in the heavy-neutrino mass range from 5 to $$50\, \text {GeV/}c^2 $$ 50 GeV/ c 2 . These are of the order of $$10^{-3}$$ 10 - 3 for lepton-number-conserving decays and of the order of $$10^{-4}$$ 10 - 4 for lepton-number-violating heavy-neutrino decays.


2019 ◽  
Author(s):  
Adrian Signer

Charged lepton flavour violating processes are naturally present in many extensions of the Standard Model. After a brief overview on the experimental situation, an effective-field-theory framework is described that allows to interpret and compare the various experiments in a consistent way. The usefulness of this approach is then illustrated in the context of a specific model with a doubly charged scalar.


Sign in / Sign up

Export Citation Format

Share Document