scholarly journals Topping-up multilepton plus b-jets anomalies at the LHC with a Z′ boson

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ezequiel Alvarez ◽  
Aurelio Juste ◽  
Manuel Szewc ◽  
Tamara Vazquez Schroeder

Abstract During the last years ATLAS and CMS have reported a number of slight to mild discrepancies in signatures of multileptons plus b-jets in analyses such as $$ t\overline{t}H $$ t t ¯ H , $$ t\overline{t}{W}^{\pm } $$ t t ¯ W ± , $$ t\overline{t}Z $$ t t ¯ Z and $$ t\overline{t}t\overline{t} $$ t t ¯ t t ¯ . Among them, a recent ATLAS result on $$ t\overline{t}H $$ t t ¯ H production has also reported an excess in the charge asymmetry in the same-sign dilepton channel with two or more b-tagged jets. Motivated by these tantalizing discrepancies, we study a phenomenological New Physics model consisting of a Z′ boson that couples to up-type quarks via right-handed currents: $$ {t}_R{\gamma}^{\mu }{\overline{t}}_R $$ t R γ μ t ¯ R , $$ {t}_R{\gamma}^{\mu }{\overline{c}}_R $$ t R γ μ c ¯ R , and $$ {t}_R{\gamma}^{\mu }{\overline{u}}_R $$ t R γ μ u ¯ R . The latter vertex allows to translate the charge asymmetry at the LHC initial state protons to a final state with top quarks which, decaying to a positive lepton and a b-jet, provides a crucial contribution to some of the observed discrepancies. Through an analysis at a detector level, we select the region in parameter space of our model that best reproduces the data in the aforementioned $$ t\overline{t}H $$ t t ¯ H study, and in a recent ATLAS $$ t\overline{t}t\overline{t} $$ t t ¯ t t ¯ search. We find that our model provides a better fit to the experimental data than the Standard Model for a New Physics scale of approximately ∼500 GeV, and with a hierarchical coupling of the Z′ boson that favours the top quark and the presence of FCNC currents. In order to estimate the LHC sensitivity to this signal, we design a broadband search featuring many kinematic regions with different signal-to-background ratio, and perform a global analysis. We also define signal-enhanced regions and study observables that could further distinguish signal from background. We find that the region in parameter space of our model that best fits the analysed data could be probed with a significance exceeding 3 standard deviations with just the full Run-2 dataset.

2013 ◽  
Vol 28 (08) ◽  
pp. 1330013 ◽  
Author(s):  
FRÉDÉRIC DÉLIOT ◽  
YVONNE PETERS ◽  
VERONICA SORIN

The heaviest known elementary particle, the top quark, was discovered in 1995 by the CDF and D0 collaborations at the Tevatron proton–antiproton collider at Fermilab. Since its discovery, a large program was set in motion by the CDF and D0 collaborations to characterize the production and decay properties of top quarks, and investigate their potential for searches of new phenomena beyond the standard model. During the past 20 years, new methods were developed and implemented to improve the measurements and searches for new physics in the top quark sector. This paper reviews the achievements and results obtained through studies of the top quark at the Tevatron.


2008 ◽  
Vol 23 (25) ◽  
pp. 4107-4124 ◽  
Author(s):  
TAO HAN

The LHC (Large Hadron Collider) will be a top-quark factory. With 80 million pairs of top quarks and an additional 34 million single tops produced annually at the designed high luminosity, the properties of this particle will be studied to a great accuracy. The fact that the top quark is the heaviest elementary particle in the Standard Model with a mass right at the electroweak scale makes it tempting to contemplate its role in electroweak symmetry breaking, as well as its potential as a window to unknown new physics at the TeV scale. We summarize the expectations for top-quark physics at the LHC, and outline new physics scenarios in which the top quark is crucially involved.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2341
Author(s):  
Tania Robens

The THDMa is a new physics model that extends the scalar sector of the Standard Model by an additional doublet as well as a pseudoscalar singlet and allows for mixing between all possible scalar states. In the gauge-eigenbasis, the additional pseudoscalar serves as a portal to the dark sector, with a priori any dark matter spins states. The option where dark matter is fermionic is currently one of the standard benchmarks for the experimental collaborations, and several searches at the LHC constrain the corresponding parameter space. However, most current studies constrain regions in parameter space by setting all but 2 of the 12 free parameters to fixed values. In this work, we performed a generic scan on this model, allowing all parameters to float. We applied all current theoretical and experimental constraints, including bounds from current searches, recent results from B-physics, in particular Bs→Xsγ, as well as bounds from astroparticle physics. We identify regions in the parameter space which are still allowed after these were applied and which might be interesting for an investigation of current and future collider machines.


2020 ◽  
pp. 2141008
Author(s):  
Luc Darmé ◽  
Benjamin Fuks

We present the implementation in MadAnalysis 5 of the CMS-TOP-18-003 search for the production of four top quarks in the Standard Model and detail the validation of this implementation. This CMS analysis studies Standard Model four-top production through the same-sign and multi-lepton plus jets channels, using a luminosity of 137 fb[Formula: see text] of proton-proton collisions at a center-of-mass energy of 13 TeV. We validate our implementation work by studying various distributions and event counts describing the properties of the signal in the context of the Standard Model: jet and [Formula: see text]-jet multiplicities, the hadronic activity [Formula: see text], and the number of expected events populating the various analysis signal regions. We then provide a small example of usage of this implementation to constrain a toy new physics model.


2017 ◽  
Vol 32 (29) ◽  
pp. 1730026
Author(s):  
Rebeca Gonzalez Suarez

After the Higgs boson discovery in 2012, the investigation of its properties and compatibility with the Standard Model predictions is central to the physics program of the LHC experiments. Likewise, the study of the top quark is still relevant at the LHC, more than two decades after its discovery at the Tevatron. Top quarks and Higgs bosons are produced at the LHC on a large scale and share a deep connection based on the large mass of the top quark. Both particles provide an excellent laboratory in which to search for new physics: the measurement of their properties tests the foundations of the Standard Model; and they feature prominently in a variety of exotic signals. The coupling of the Higgs boson to the top quark, a fundamental Standard Model parameter, can only be measured directly in processes where the two particles are produced together. The production of a Higgs boson together with one or two top quarks is also sensitive to several exciting new physics effects. A brief overview of the current experimental status of top quark and Higgs boson physics is presented using results from the CMS Collaboration.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
J. A. Aguilar-Saavedra

AbstractJet tagging has become an essential tool for new physics searches at the high-energy frontier. For jets that contain energetic charged leptons we introduce Feature Extended Supervised Tagging (FEST) which, in addition to jet substructure, considers the features of the charged lepton within the jet. With this method we build dedicated taggers to discriminate among boosted $$H \rightarrow \ell \nu q {\bar{q}}$$ H → ℓ ν q q ¯ , $$t \rightarrow \ell \nu b$$ t → ℓ ν b , and QCD jets (with $$\ell $$ ℓ an electron or muon). The taggers have an impressive performance, allowing for overall light jet rejection factors of $$10^4-10^5$$ 10 4 - 10 5 , for top quark/Higgs boson efficiencies of 0.5. The taggers are also excellent in the discrimination of Higgs bosons from top quarks and vice versa, for example rejecting top quarks by factors of 100–300 for Higgs boson efficiencies of 0.5. We demonstrate the potential of these taggers to improve the sensitivity to new physics by using as example a search for a new $$Z'$$ Z ′ boson decaying into ZH, in the fully-hadronic final state.


1997 ◽  
Vol 12 (07) ◽  
pp. 1341-1372 ◽  
Author(s):  
Chung Kao ◽  
G. A. Ladinsky ◽  
C.-P. Yuan

We calculate the leading weak corrections at [Formula: see text] to the QCD production of heavy top quark pairs via [Formula: see text] at hadron colliders and compare them with the complete one-loop weak corrections. We find that these corrections dominate the threshold region for a heavy top quark if the Higgs boson is light. For a heavy Higgs boson, these corrections are generally small. The chromo-anapole form factor of the top quark and effects of parity violation are studied in the Standard Model (SM). The parity violation effect in [Formula: see text] from the SM weak corrections is found to be very small, so any observation of large parity violation in this process would indicate new physics. The polarization of the [Formula: see text] pairs is also discussed, including the effect that this has on proposed techniques for measuring the top quark mass.


1996 ◽  
Vol 11 (36) ◽  
pp. 2809-2823
Author(s):  
F. STICHELBAUT

At the end of 1995, the LEP collider at CERN was operated at center-of-mass energies of 130 and 136 GeV and data corresponding to about 6 pb−1 were collected by each of the four LEP experiments. The cross-sections for fermion-pair production processes and the forward-backward asymmetries for charged lepton pairs were measured and compared to the standard model predictions. Events containing only energetic photons in the final state were used to look for effects arising from new physics. Direct searches for new particles predicted by various models beyond the standard model were performed. Searches for pair or singly produced excited leptons, for unstable charged and neutral heavy leptons, and for supersymmetric particles (chargino, neutralino, scalar leptons and scalar top quark) resulted in new exclusion limits. The ALEPH collaboration reported an excess of four-jet events in its data, which was not confirmed by the other LEP experiments.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Henning Bahl ◽  
Philip Bechtle ◽  
Sven Heinemeyer ◽  
Judith Katzy ◽  
Tobias Klingl ◽  
...  

Abstract The $$ \mathcal{CP} $$ CP structure of the Higgs boson in its coupling to the particles of the Standard Model is amongst the most important Higgs boson properties which have not yet been constrained with high precision. In this study, all relevant inclusive and differential Higgs boson measurements from the ATLAS and CMS experiments are used to constrain the $$ \mathcal{CP} $$ CP -nature of the top-Yukawa interaction. The model dependence of the constraints is studied by successively allowing for new physics contributions to the couplings of the Higgs boson to massive vector bosons, to photons, and to gluons. In the most general case, we find that the current data still permits a significant $$ \mathcal{CP} $$ CP -odd component in the top-Yukawa coupling. Furthermore, we explore the prospects to further constrain the $$ \mathcal{CP} $$ CP properties of this coupling with future LHC data by determining tH production rates independently from possible accompanying variations of the $$ t\overline{t}H $$ t t ¯ H rate. This is achieved via a careful selection of discriminating observables. At the HL-LHC, we find that evidence for tH production at the Standard Model rate can be achieved in the Higgs to diphoton decay channel alone.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Alexander Bednyakov ◽  
Alfiia Mukhaeva

Flavour anomalies have attracted a lot of attention over recent years as they provide unique hints for possible New Physics. Here, we consider a supersymmetric (SUSY) extension of the Standard Model (SM) with an additional anomaly-free gauge U(1) group. The key feature of our model is the particular choice of non-universal charges to the gauge boson Z′, which not only allows a relaxation of the flavour discrepancies but, contrary to previous studies, can reproduce the SM mixing matrices both in the quark and lepton sectors. We pay special attention to the latter and explicitly enumerate all parameters relevant for our calculation in the low-energy effective theory. We find regions in the parameter space that satisfy experimental constraints on meson mixing and LHC Z′ searches and can alleviate the flavour anomalies. In addition, we also discuss the predictions for lepton-flavour violating decays B+→K+μτ and B+→K+eτ.


Sign in / Sign up

Export Citation Format

Share Document