scholarly journals Two-loop anomalous dimensions of QCD operators up to dimension-sixteen and Higgs EFT amplitudes

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Qing jun Jin ◽  
Ke Ren ◽  
Gang Yang

Abstract We consider two-loop renormalization of high-dimensional Lorentz scalar operators in the gluonic sector of QCD. These operators appear also in the Higgs effective theory obtained by integrating out the top quark loop in the gluon fusion process. We first discuss the classification of operators and how to construct a good set of basis using both off-shell field theory method and on-shell form factor formalism. To study loop corrections, we apply efficient unitarity-IBP strategy and compute the two-loop minimal form factors of length-3 operators up to dimension sixteen. From the UV divergences of form factor results, we extract the renormalization matrices and analyze the operator mixing behavior in detail. The form factors we compute are also equivalent to Higgs plus three-gluon amplitudes that capture high-order top mass corrections in Higgs EFT. We obtain the analytic finite remainder functions which exhibit several universal transcendentality structures.

2018 ◽  
Vol 175 ◽  
pp. 13025
Author(s):  
Debasish Banerjee ◽  
Mateusz Koren ◽  
Hubert Simma ◽  
Rainer Sommer

We compute semi-leptonic Bs decay form factors using Heavy Quark Effective Theory on the lattice. To obtain good control of the 1 /mb expansion, one has to take into account not only the leading static order but also the terms arising at O (1/mb): kinetic, spin and current insertions. We show results for these terms calculated through the ratio method, using our prior results for the static order. After combining them with non-perturbative HQET parameters they can be continuum-extrapolated to give the QCD form factor correct up to O (1/[see formula in PDF]) corrections and without O (αs(mb)n) corrections.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Long Chen ◽  
Gudrun Heinrich ◽  
Stephen P. Jones ◽  
Matthias Kerner ◽  
Jonas Klappert ◽  
...  

Abstract We present results for the two-loop helicity amplitudes entering the NLO QCD corrections to the production of a Higgs boson in association with a Z -boson in gluon fusion. The two-loop integrals, involving massive top quarks, are calculated numerically. Results for the interference of the finite part of the two-loop amplitudes with the Born amplitude are shown as a function of the two kinematic invariants on which the amplitudes depend.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Junegone Chay ◽  
Chul Kim

Abstract In soft-collinear effective theory, we analyze the structure of rapidity divergence due to the collinear and soft modes residing in disparate phase spaces. The idea of an effective theory is applied to a system of collinear modes with large rapidity and soft modes with small rapidity. The large-rapidity (collinear) modes are integrated out to obtain the effective theory for the small-rapidity (soft) modes. The full SCET with the collinear and soft modes should be matched onto the soft theory at the rapidity boundary, and the matching procedure becomes exactly the zero-bin subtraction. The large-rapidity region is out of reach for the soft mode, which results in the rapidity divergence. The rapidity divergence in the collinear sector comes from the zero-bin subtraction, which ensures the cancellation of the rapidity divergences from the soft and collinear sectors. In order to treat the rapidity divergence, we construct the rapidity regulators consistently for all the modes. They are generalized by assigning independent rapidity scales for different collinear directions. The soft regulator incorporates the correct directional dependence when the innate collinear directions are not back-to-back, which is discussed in the N-jet operator. As an application, we consider the Sudakov form factor for the back-to-back collinear current and the soft-collinear current, where the soft rapidity regulator for a soft quark is developed. We extend the analysis to the boosted heavy quark sector and exploit the delicacy with the presence of the heavy quark mass. We present the resummed results of large logarithms in the form factors for various currents with the light and the heavy quarks, employing the renormalization group evolution on the renormalization and the rapidity scales.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Martin Bauer ◽  
Matthias Neubert ◽  
Sophie Renner ◽  
Marvin Schnubel ◽  
Andrea Thamm

Abstract Axions and axion-like particles (ALPs) are well-motivated low-energy relics of high-energy extensions of the Standard Model, which interact with the known particles through higher-dimensional operators suppressed by the mass scale Λ of the new-physics sector. Starting from the most general dimension-5 interactions, we discuss in detail the evolution of the ALP couplings from the new-physics scale to energies at and below the scale of electroweak symmetry breaking. We derive the relevant anomalous dimensions at two-loop order in gauge couplings and one-loop order in Yukawa interactions, carefully considering the treatment of a redundant operator involving an ALP coupling to the Higgs current. We account for one-loop (and partially two-loop) matching contributions at the weak scale, including in particular flavor-changing effects. The relations between different equivalent forms of the effective Lagrangian are discussed in detail. We also construct the effective chiral Lagrangian for an ALP interacting with photons and light pseudoscalar mesons, pointing out important differences with the corresponding Lagrangian for the QCD axion.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
N. G. Gracia ◽  
V. Mateu

Abstract We present results for SCET and bHQET matching coefficients and jet functions in the large-β0 limit. Our computations exactly predict all terms of the form $$ {\alpha}_s^{n+1}{n}_f^n $$ α s n + 1 n f n for any n ≥ 0, and we find full agreement with the coefficients computed in the full theory up to $$ \mathcal{O}\left({\alpha}_s^4\right) $$ O α s 4 . We obtain all-order closed expressions for the cusp and non-cusp anomalous dimensions (which turn out to be unambiguous) as well as matrix elements (with ambiguities) in this limit, which can be easily expanded to arbitrarily high powers of αs using recursive algorithms to obtain the corresponding fixed-order coefficients. Examining the poles laying on the positive real axis of the Borel-transform variable u we quantify the perturbative convergence of a series and estimate the size of non-perturbative corrections. We find a so far unknown u = 1/2 renormalon in the bHQET hard factor Hm that affects the normalization of the peak differential cross section for boosted top quark pair production. For ambiguous series the so-called Borel sum is defined with the principal value prescription. Furthermore, one can assign an ambiguity based on the arbitrariness of avoiding the poles by contour deformation into the positive or negative imaginary half-plane. Finally, we compute the relation between the pole mass and four low-scale short distance masses in the large-β0 approximation (MSR, RS and two versions of the jet mass), work out their μ- and R-evolution in this limit, and study how their implementation improves the convergence of the position-space bHQET jet function, whose three-loop coefficient in full QCD is numerically estimated.


1968 ◽  
Vol 46 (10) ◽  
pp. S377-S380 ◽  
Author(s):  
A. A. Petrukhin ◽  
V. V. Shestakov

The cross section for the muon bremsstrahlung process is calculated as a function of the nuclear form factor in the Born approximation following the Bethe and Heitler theory. The influence of the nuclear form factor is greater than that taken by Christy and Kusaka. The simple analytical expression for the effect of the screening of the atomic electrons is found. The influence of a decrease in the cross section upon the interpretation of some experimental results is estimated.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Guanda Lin ◽  
Gang Yang

Abstract Form factors, as quantities involving both local operators and asymptotic particle states, contain information of both the spectrum of operators and the on-shell amplitudes. So far the studies of form factors have been mostly focused on the large Nc planar limit, with a few exceptions of Sudakov form factors. In this paper, we discuss the systematical construction of full color dependent form factors with generic local operators. We study the color decomposition for form factors and discuss the general strategy of using on-shell unitarity cut method. As concrete applications, we compute the full two-loop non-planar minimal form factors for both half-BPS operators and non-BPS operators in the SU(2) sector in $$ \mathcal{N} $$ N = 4 SYM. Another important aspect is to investigate the color-kinematics (CK) duality for form factors of high-length operators. Explicit CK dual representation is found for the two-loop half-BPS minimal form factors with arbitrary number of external legs. The full-color two-loop form factor result provides an independent check of the infrared dipole formula for two-loop n-point amplitudes. By extracting the UV divergences, we also reproduce the known non-planar SU(2) dilatation operator at two loops. As for the finite remainder function, interestingly, the non-planar part is found to contain a new maximally transcendental part beyond the known planar result.


1980 ◽  
Vol 58 (1) ◽  
pp. 48-62 ◽  
Author(s):  
R. D. Graves ◽  
B. A. Lamers ◽  
Anton Nagl ◽  
H. Überall ◽  
V. Devanathan ◽  
...  

The available experimental data for the form factors of the T = 1 levels in 16O, obtained from electron scattering at low (Darmstadt), medium (Tohoku), and high momentum transfer (Stanford), are interpreted by the generalized Helm model. This phenomenological model reduces the form factor description of each level to the listing of a few physical parameters, i.e., the radius and smearing width of the transition densities of charge (current) and magnetization, and their corresponding strength constants. Its parameters having been determined by the form factor fits, the model may then be used to predict the results of other medium energy processes; this is done here for the photoproduction of charged pions and for muon capture in16O.


2019 ◽  
Author(s):  
Thomas Johannes Georg Rauh ◽  
Joshua Davies ◽  
Ramona Gröber ◽  
Andreas Maier ◽  
Matthias Steinhauser

Sign in / Sign up

Export Citation Format

Share Document