scholarly journals Self-duality in the context of the Skyrme model

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
L.A. Ferreira ◽  
L.R. Livramento

Abstract We study a recently proposed modification of the Skyrme model that possesses an exact self-dual sector leading to an infinity of exact Skyrmion solutions with arbitrary topological (baryon) charge. The self-dual sector is made possible by the introduction, in addition to the usual three SU(2) Skyrme fields, of six scalar fields assembled in a symmetric and invertible three dimensional matrix h. The action presents quadratic and quartic terms in derivatives of the Skyrme fields, but instead of the group indices being contracted by the SU(2) Killing form, they are contracted with the h-matrix in the quadratic term, and by its inverse on the quartic term. Due to these extra fields the static version of the model, as well as its self-duality equations, are conformally invariant on the three dimensional space ℝ3. We show that the static and self-dual sectors of such a theory are equivalent, and so the only non-self-dual solution must be time dependent. We also show that for any configuration of the Skyrme SU(2) fields, the h-fields adjust themselves to satisfy the self-duality equations, and so the theory has plenty of non-trivial topological solutions. We present explicit exact solutions using a holomorphic rational ansatz, as well as a toroidal ansatz based on the conformal symmetry. We point to possible extensions of the model that break the conformal symmetry as well as the self-dual sector, and that can perhaps lead to interesting physical applications.

Author(s):  
Yan Liu ◽  
Meifeng Dai ◽  
Yuanyuan Guo

Fractal generally has self-similarity. Using the self-similarity of fractal, we can obtain some important theories about complex networks. In this paper, we concern the Vicsek fractal in three-dimensional space, which provides a natural generalization of Vicsek fractal. Concretely, the Vicsek fractal in three-dimensional space is obtained by repeatedly removing equilateral cubes from an initial equilateral cube of unit side length, at each stage each remaining cube is divided into [Formula: see text] smaller cubes of which [Formula: see text] are kept and the rest discarded, where [Formula: see text] is odd. In addition, we obtain the skeleton network of the Vicsek fractal in three-dimensional space. Then we focus on weighted average geodesic distance of the Vicsek fractal in three-dimensional space. Take [Formula: see text] as an example, we define a similar measure on the Vicsek fractal in three-dimensional space by weight vector and calculate the weighted average geodesic distance. At the same time, asymptotic formula of weighted average geodesic distance on the skeleton network is also obtained. Finally, the general formula of weighted average geodesic distance should be applicable to the models when [Formula: see text], the base of a power, is odd.


We present a self-contained account of the ideas of R. Penrose connecting four-dimensional Riemannian geometry with three-dimensional complex analysis. In particular we apply this to the self-dual Yang-Mills equations in Euclidean 4-space and compute the number of moduli for any compact gauge group. Results previously announced are treated with full detail and extended in a number of directions.


2015 ◽  
Vol 93 (11) ◽  
pp. 1352-1355
Author(s):  
M.R. Tanhayi ◽  
S. Ejlali

In this paper, we study the conformal symmetry breaking in conformally invariant Hilbert–Einstein action via expansion of action up to second order around the background space–time. It is shown that the theory can be described a non-tachyonic and ghost-free theory that propagates massless spin-2, massive gauge, and also massless scalar fields.


2009 ◽  
Vol 87 (3) ◽  
pp. 251-254 ◽  
Author(s):  
Ariel Edery ◽  
Luca Fabbri ◽  
M. B. Paranjape

We consider a Georgi–Glashow model conformally coupled to gravity. The conformally invariant action includes a triplet of scalar fields and SO(3) non-Abelian gauge fields. However, the usual mass term μ2ϕ2 is forbidden by the symmetry, and this role is now played by the conformal coupling of the Ricci scalar to the scalar fields. Spontaneous symmetry breaking occurs via gravitation. The spherically symmetric solutions correspond to localized solitons (magnetic monopoles) in asymptotically anti-de Sitter (AdS) spacetime and the metric outside the core of the monopole is found to be Schwarzschild–AdS. Though conformal symmetry excludes the Einstein–Hilbert term in the original action, it emerges in the effective action after spontaneous symmetry breaking and dominates the low-energy–long-distance regime outside the core of the monopole.


2020 ◽  
Author(s):  
Timothy Kunz ◽  
Lila Rieber ◽  
Shaun Mahony

ABSTRACTFew existing methods enable the visualization of relationships between regulatory genomic activities and genome organization as captured by Hi-C experimental data. Genome-wide Hi-C datasets are often displayed using “heatmap” matrices, but it is difficult to intuit from these heatmaps which biochemical activities are compartmentalized together. High-dimensional Hi-C data vectors can alternatively be projected onto three-dimensional space using dimensionality reduction techniques. The resulting three-dimensional structures can serve as scaffolds for projecting other forms of genomic information, thereby enabling the exploration of relationships between genome organization and various genome annotations. However, while three-dimensional models are contextually appropriate for chromatin interaction data, some analyses and visualizations may be more intuitively and conveniently performed in two-dimensional space.We present a novel approach to the visualization and analysis of chromatin organization based on the Self-Organizing Map (SOM). The SOM algorithm provides a two-dimensional manifold which adapts to represent the high dimensional chromatin interaction space. The resulting data structure can then be used to assess the relationships between regulatory genomic activities and chromatin interactions. For example, given a set of genomic coordinates corresponding to a given biochemical activity, the degree to which this activity is segregated or compartmentalized in chromatin interaction space can be intuitively visualized on the 2D SOM grid and quantified using Lorenz curve analysis. We demonstrate our approach for exploratory analysis of genome compartmentalization in a high-resolution Hi-C dataset from the human GM12878 cell line. Our SOM-based approach provides an intuitive visualization of the large-scale structure of Hi-C data and serves as a platform for integrative analyses of the relationships between various genomic activities and genome organization.


Author(s):  
Vishant J. Shahnawaz ◽  
Judy M. Vance ◽  
Sasikumar V. Kutti

Abstract This paper discusses the development of a virtual reality (VR) interface for the visualization of Computational Fluid Dynamics (CFD) data. The application, VR-CFD, provides an immersive and interactive graphical environment in which users can examine the analysis results from a CFD analysis of a flow field in three-dimensional space. It has been tested and implemented with virtual reality devices such as the C2, head mounted display (HMD) and desktop VR. The application is designed to read PLOT3D structured grid data and to display the flow field parameters using features such as streamlines, cutting planes, iso-surfaces, rakes, vector fields and scalar fields. Visualization Toolkit (VTK), a data visualization library, is used along with OpenGL arid the C2 VR interface libraries, to develop the application. Analysts and designers have used VR-CFD to visualize and understand complex three-dimensional fluid flow phenomena. The combination of three-dimensional interaction capability and the C2 virtual reality environment has been shown to facilitate collaborative discussions between analysts and engineers concerning the appropriateness of the CFD model and the characteristics of the fluid flow.


1990 ◽  
Vol 05 (12) ◽  
pp. 911-915
Author(s):  
R. P. ZAIKOV

The self-dual classical bosonic p-branes are generalized for D = (p + 1) q dimensional space-time. When q > 1, the action is no more pure gauge. Some instanton-like solutions of the self-duality equations which minimize the Euclidean action are discussed.


Perception ◽  
2021 ◽  
Vol 50 (3) ◽  
pp. 231-248
Author(s):  
Xiaoyuan Liu ◽  
Qinyue Qian ◽  
Lingyun Wang ◽  
Aijun Wang ◽  
Ming Zhang

Spatial inhibition of return (IOR) being affected by the self-prioritization effect (SPE) in a two-dimensional plane has been well documented. However, it remains unknown how the spatial IOR interacts with the SPE in three-dimensional (3D) space. By constructing a virtual 3D environment, Posner’s classically two-dimensional cue-target paradigm was applied to a 3D space. Participants first associated labels for themselves, their best friends, and strangers with geometric shapes in a shape-label matching task, then performed Experiment 1 (referential information appeared as the cue label) and Experiment 2 (referential information appeared as the target label) to investigate whether the IOR effect could be influenced by the SPE in 3D space. This study showed that when the cue was temporarily established with a self-referential shape and appeared in far space, the IOR effect was the smallest. When the target was temporarily established with a self-referential shape and appeared in near space, the IOR effect disappeared. This study suggests that the IOR effect was affected by the SPE when attention was oriented or reoriented in 3D space and that the IOR effect disappeared or decreased when affected by the SPE in 3D space.


Sign in / Sign up

Export Citation Format

Share Document