scholarly journals DUALITY AND SELF-DUAL TRIPLET SOLUTIONS IN EUCLIDEAN GRAVITY

1996 ◽  
Vol 11 (34) ◽  
pp. 2669-2679
Author(s):  
SWAPNA MAHAPATRA

Starting from the self-dual “triplet” of gravitational instanton solutions in Euclidean gravity, we obtain the corresponding instanton solutions in string theory by making use of the target space duality symmetry. We show that these dual triplet solutions can be obtained from the general dual Taub-NUT de Sitter solution through some limiting procedure as in the Euclidean gravity case. The dual gravitational instanton solutions obtained here are self-dual for some cases, with respect to certain isometries, but not always.

2000 ◽  
Vol 15 (12) ◽  
pp. 1707-1756 ◽  
Author(s):  
G. V. KRANIOTIS

In this work, we review recent work on string cosmology. The need for an inflationary era is well known. Problems of Standard Cosmology such as horizon, flatness, monopole and entropy find an elegant solution in the inflationary scenario. On the other hand no adequate inflationary model has been constructed so far. In this review we discuss the attempts that have been made in the field of string theory for obtaining an adequate Cosmological Inflationary Epoch. In particular, orbifold compactifications of string theory which are constrained by target-space duality symmetry offer as natural candidates for the role of inflatons the orbifold moduli. Orbifold moduli dynamics is very constrained by duality symmetry and offers a concrete framework for discussing Cosmological Inflation. We discuss the resulting cosmology assuming that nonperturbative dynamics generates a moduli potential which respects target-space modular invariance. Various modular forms for the nonperturbative superpotential and Kähler potential which include the absolute modular invariant j(T) besides the Dedekind eta function η(T) are discussed. We also review scale-factor duality and pre-Big-Bang scenarios in which inflation is driven by the kinetic terms of the dilaton modulus. In this context we discuss the problem of graceful exit and review recent attempts for solving the problem of exiting from inflation. The possibility of obtaining inflation through the D-terms in string models with anomalous UA(1) and other Abelian factors is reviewed. In this context we discuss how the slow-roll problem in supergravity models with F-term inflation can be solved by D-term inflation. We also briefly review the consequences of duality for a generalized Heisenberg uncertainty principle and the structure of space–time at short scales. The problem of the Cosmological Constant is also briefly discussed.


1994 ◽  
Vol 09 (21) ◽  
pp. 3707-3750 ◽  
Author(s):  
ASHOKE SEN

We present several pieces of evidence for strong–weak coupling duality symmetry in the heterotic string theory, compactified on a six-dimensional torus. They include symmetry of the (1) low energy effective action, (2) allowed spectrum of electric and magnetic charges in the theory, (3) allowed mass spectrum of particles saturating the Bogomol'nyi bound, and (4) Yukawa couplings between massless neutral particles and massive charged particles saturating the Bogomol'nyi bound. This duality transformation exchanges the electrically charged elementary string excitations with the magnetically charged soliton states in the theory. It is shown that the existence of a strong–weak coupling duality symmetry in four-dimensional string theory makes definite predictions about the existence of new stable monopole and dyon states in the theory with specific degeneracies, including certain supersymmetric bound states of monopoles and dyons. The relationship between strong–weak coupling duality transformation in string theory and target space duality transformation in the five-brane theory is also discussed.


2013 ◽  
Vol 10 (08) ◽  
pp. 1360003
Author(s):  
YOLANDA LOZANO

Duality symmetries have played a key role in the discovery that the five consistent superstring theories in 10 dimensions emerge as different corners of the moduli space of a single unifying theory, known as M-theory. Focusing on the target space, or T, duality symmetry, we show how it can be formulated in spacetimes with abelian and non-abelian isometries. Finally, we discuss some recent work that realizes non-abelian T-duality as a consistent truncation to seven-dimensional supergravity, thus generalizing to the non-abelian case the realization of abelian T-duality at the supergravity level.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sukruti Bansal ◽  
Silvia Nagy ◽  
Antonio Padilla ◽  
Ivonne Zavala

Abstract Recent progress in understanding de Sitter spacetime in supergravity and string theory has led to the development of a four dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua, also called de Sitter supergravity. One approach makes use of constrained (nilpotent) superfields, while an alternative one couples supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action. These two approaches have been shown to give rise to the same 4D action. A novel approach to de Sitter vacua in supergravity involves the generalisation of unimodular gravity to supergravity using a super-Stückelberg mechanism. In this paper, we make a connection between this new approach and the previous two which are in the context of nilpotent superfields and the goldstino brane. We show that upon appropriate field redefinitions, the 4D actions match up to the cubic order in the fields. This points at the possible existence of a more general framework to obtain de Sitter spacetimes from high-energy theories.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ignatios Antoniadis ◽  
Yifan Chen ◽  
George K. Leontaris

1999 ◽  
Vol 14 (14) ◽  
pp. 2257-2271 ◽  
Author(s):  
KASPER OLSEN ◽  
RICARDO SCHIAPPA

We consider target space duality transformations for heterotic sigma models and strings away from renormalization group fixed points. By imposing certain consistency requirements between the T-duality symmetry and renormalization group flows, the one-loop gauge beta function is uniquely determined, without any diagram calculations. Classical T-duality symmetry is a valid quantum symmetry of the heterotic sigma model, severely constraining its renormalization flows at this one-loop order. The issue of heterotic anomalies and their cancellation is addressed from this duality constraining viewpoint.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Joonho Kim ◽  
Seok Kim ◽  
Kimyeong Lee

Abstract We explore 6d (1, 0) superconformal field theories with SU(3) and SU(2) gauge symmetries which cascade after Higgsing to the E-string theory on a single M5 near an E8 wall. Specifically, we study the 2d $$ \mathcal{N} $$ N = (0, 4) gauge theories which describe self-dual strings of these 6d theories. The self-dual strings can be also viewed as instanton string solitons of 6d Yang-Mills theories. We find the 2d anomaly-free gauge theories for self-dual strings, amending the naive ADHM gauge theories which are anomalous, and calculate their elliptic genera. While these 2d theories respect the flavor symmetry of each 6d SCFT only partially, their elliptic genera manifest the symmetry fully as these functions as BPS index are invariant in strongly coupled IR limit. Our consistent 2d (0, 4) gauge theories also provide new insights on the non-linear sigma models for the instanton strings, providing novel UV completions of the small instanton singularities. Finally, we construct new 2d quiver gauge theories for the self-dual strings in 6d E-string theory for multiple M5-branes probing the E8 wall, and find their fully refined elliptic genera.


1994 ◽  
Vol 244 (2-3) ◽  
pp. 77-202 ◽  
Author(s):  
Amit Giveon ◽  
Massimo Porrati ◽  
Eliezer Rabinovici
Keyword(s):  

2012 ◽  
Vol 21 (11) ◽  
pp. 1241004 ◽  
Author(s):  
TOM BANKS

The theory of holographic spacetime (HST) generalizes both string theory and quantum field theory (QFT). It provides a geometric rationale for supersymmetry (SUSY) and a formalism in which super-Poincare invariance follows from Poincare invariance. HST unifies particles and black holes, realizing both as excitations of noncommutative geometrical variables on a holographic screen. Compact extra dimensions are interpreted as finite-dimensional unitary representations of super-algebras, and have no moduli. Full field theoretic Fock spaces, and continuous moduli are both emergent phenomena of super-Poincare invariant limits in which the number of holographic degrees of freedom goes to infinity. Finite radius de Sitter (dS) spaces have no moduli, and break SUSY with a gravitino mass scaling like Λ1/4. In regimes where the Covariant Entropy Bound is saturated, QFT is not a good description in HST, and inflation is such a regime. Following ideas of Jacobson, the gravitational and inflaton fields are emergent classical variables, describing the geometry of an underlying HST model, rather than "fields associated with a microscopic string theory". The phrase in quotes is meaningless in the HST formalism, except in asymptotically flat and AdS spacetimes, and some relatives of these.


Sign in / Sign up

Export Citation Format

Share Document