scholarly journals Jackiw-Teitelboim gravity in the second order formalism

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Upamanyu Moitra ◽  
Sunil Kumar Sake ◽  
Sandip P. Trivedi

Abstract We formulate the path integral for Jackiw-Teitelboim gravity in the second order formalism working directly with the metric and the dilaton. We consider the theory both in Anti-de Sitter(AdS) and de Sitter space(dS) and analyze the path integral for the disk topology and the “double trumpet” topology with two boundaries. We also consider its behavior in the presence of conformal matter. In the dS case the path integral evaluates the wavefunction of the universe which arises in the no-boundary proposal. In the asymptotic AdS or dS limit without matter we get agreement with the first order formalism. More generally, away from this limit, the path integral is more complicated due to the presence of modes from the gravity- dilaton sector and also matter sector with short wavelengths along the boundary that are smaller than the AdS or dS scales. In the double trumpet case, for both AdS and dS, we find that bosonic matter gives rise to a diverging contribution in the moduli space integral rendering the path integral ill-defined. The divergence occurs when the size of the wormhole neck vanishes and is related to the Casimir effect. For fermions this divergence can be avoided by imposing suitable boundary conditions. In this case, in dS space the resulting path integral gives a finite contribution for two disconnected universes to be produced by quantum tunneling.

2017 ◽  
Vol 9 (3) ◽  
pp. 17-30
Author(s):  
Kelly James Clark

In Branden Thornhill-Miller and Peter Millican’s challenging and provocative essay, we hear a considerably longer, more scholarly and less melodic rendition of John Lennon’s catchy tune—without religion, or at least without first-order supernaturalisms (the kinds of religion we find in the world), there’d be significantly less intra-group violence. First-order supernaturalist beliefs, as defined by Thornhill-Miller and Peter Millican (hereafter M&M), are “beliefs that claim unique authority for some particular religious tradition in preference to all others” (3). According to M&M, first-order supernaturalist beliefs are exclusivist, dogmatic, empirically unsupported, and irrational. Moreover, again according to M&M, we have perfectly natural explanations of the causes that underlie such beliefs (they seem to conceive of such natural explanations as debunking explanations). They then make a case for second-order supernaturalism, “which maintains that the universe in general, and the religious sensitivities of humanity in particular, have been formed by supernatural powers working through natural processes” (3). Second-order supernaturalism is a kind of theism, more closely akin to deism than, say, Christianity or Buddhism. It is, as such, universal (according to contemporary psychology of religion), empirically supported (according to philosophy in the form of the Fine-Tuning Argument), and beneficial (and so justified pragmatically). With respect to its pragmatic value, second-order supernaturalism, according to M&M, gets the good(s) of religion (cooperation, trust, etc) without its bad(s) (conflict and violence). Second-order supernaturalism is thus rational (and possibly true) and inconducive to violence. In this paper, I will examine just one small but important part of M&M’s argument: the claim that (first-order) religion is a primary motivator of violence and that its elimination would eliminate or curtail a great deal of violence in the world. Imagine, they say, no religion, too.Janusz Salamon offers a friendly extension or clarification of M&M’s second-order theism, one that I think, with emendations, has promise. He argues that the core of first-order religions, the belief that Ultimate Reality is the Ultimate Good (agatheism), is rational (agreeing that their particular claims are not) and, if widely conceded and endorsed by adherents of first-order religions, would reduce conflict in the world.While I favor the virtue of intellectual humility endorsed in both papers, I will argue contra M&M that (a) belief in first-order religion is not a primary motivator of conflict and violence (and so eliminating first-order religion won’t reduce violence). Second, partly contra Salamon, who I think is half right (but not half wrong), I will argue that (b) the religious resources for compassion can and should come from within both the particular (often exclusivist) and the universal (agatheistic) aspects of religious beliefs. Finally, I will argue that (c) both are guilty, as I am, of the philosopher’s obsession with belief. 


1988 ◽  
Vol 03 (04) ◽  
pp. 953-1021 ◽  
Author(s):  
RICCARDO D’AURIA ◽  
PIETRO FRÉ ◽  
MARIO RACITI ◽  
FRANCO RIVA

Using a theorem by Bonora-Pasti and Tonin on the existence of a solution for D=10N=1 Bianchi identities in the presence of a Lorentz Chern Simons term, we find an explicit parametrization of the superspace curvatures. Our solution depends only on one free parameter which can be reabsorbed in a field redefinition of the dilaton and of the gravitello. We emphasize that the essential point which enables us to obtain a closed form for the curvature parametrizations and hence for the supersymmetry transformation rules is the use of first order formalism. The spin connection is known once the torsion is known. This latter, rather than being identified with Hµνρ as it is usually done in the literature, is related to it by a differential equation which reduces to the algebraic relation Hµνρ = - 3Tµνρ e4/3σ only at γ1=0 (γ1 being proportional to κ/g2). The solution of the Bianchi identities exhibited in this paper corresponds to a D=10 anomaly free supergravity (AFS). This theory is unique in first order formalism but corresponds to various theories in second order formalism. Indeed the torsion equation is a differential equation which, in order to be solved must be supplemented with boundary conditions. One wonders whether supplemented with a judicious choice of boundary conditions for the torsion equation, AFS yields all the interaction terms found in the effective theory of the heterotic string (ETHS). In this respect two remarks are in order. Firstly it appears that solving the torsion equation iteratively with Tµνρ = -1/3Hµνρ e-4/3σ as starting point all the terms of ETHS except those with a ζ(3) coefficient show up. (Whether the coefficient agree is still to be checked.) Secondly, as shown in this paper the rheonomic solution of the super Poincaré Bianchi identities is unique. Hence additional interaction terms can be added to the Lagrangian only by modifying the rheonomic parametrization of the [Formula: see text]-curvature. The only assumption made in our paper is that [Formula: see text] has at most ψ∧ψ∧V components (sector (1,2)). Correspondingly the only room left for a modification of the present theory is the addition of a (0, 3) part in the rheonomic parametrization of [Formula: see text]. When this work was already finished a conjecture was published by Lechner Pasti and Tonin that such a generalization of AFS might exist and be responsible for the ζ(3) missing term. Indeed if we were able to solve the [Formula: see text]-Bianchi with this new (0, 3)-part then the torsion equation would be modified via new terms which, in second order formalism, lead to additional gravitational interactions. The equation of motion of Anomaly Free Supergravity can be worked out from the Bianchi identities: we indicate through which steps. The corresponding Lagrangian could be constructed with the standard procedures of the rheonomy approach. In this paper we limit ourselves to the bosonic sector of such a Lagrangian and we show that it can indeed be constructed in such a way as to produce the relation between Hµνρ and Tµνρ as a variational equation.


2001 ◽  
Vol 204 ◽  
pp. 437-437
Author(s):  
M. D. Suran ◽  
N. A. Popescu

The electronic catalog of infrared and optical photometry in the Hubble Deep Field South (NICMOS) identifies galaxies at redshifts ranging from z near 0 through z greater than 10. In this paper we try to investigate the formation and evolution of different structures in the Universe, using cosmological N-body simulations. By means of 2563/5123-point, 5–25 Mpc simulations, we traced the relation among the evolution of first order filamentary web structures, galactic and cluster structures, and second order filamentary web structures. These simulations have been made in order to derive the environmental effects (first/second order collapse, heating/cooling mergers) in the early Universe (10 > z > 2), closely related to galactic and cluster evolution.


1981 ◽  
Vol 48 (1) ◽  
pp. 109-112 ◽  
Author(s):  
J. G. Simmonds

The governing equations for plates that twist as they deform are reduced to 14 differential equations, first-order in a single space variable and second-order in time. Many of the equations are the same as for statics. Nevertheless, the extension to dynamics is nontrivial because the natural coordinates to use to describe the deformed, developable midsurface are not Lagrangian. The plate is assumed to have two curved, stress-free edges, one built-in straight edge, and one free straight edge acted upon by a force and a couple. There are 7 boundary conditions at the built-in end and 7 at the free end.


2003 ◽  
Vol 18 (23) ◽  
pp. 4285-4293 ◽  
Author(s):  
M. R. Setare

The Casimir forces on two parallel plates in conformally flat de Sitter background due to conformally coupled massless scalar field satisfying mixed boundary conditions on the plates is investigated. In the general case of mixed boundary conditions formulae are derived for the vacuum expectation values of the energy–momentum tensor and vacuum forces acting on boundaries. Different cosmological constants are assumed for the space between and outside of the plates to have general results applicable to the case of domain wall formations in the early universe.


2021 ◽  
Vol 43 (2) ◽  
pp. 5-12
Author(s):  
A.A. Avramenko ◽  
N.P. Dmitrenko ◽  
Yu.Yu. Kovetska ◽  
O.I. Skitsko

The results of the study of heat transfer under forced convection in a flat porous microchannel taking into account the boundary conditions of slippage of the first and second order are considered. The simulation showed that with decreasing porosity the flow velocity in the central part of the microchannel and the slipping velocity on the wall decrease due to the increase in hydrodynamic resistance. Taking into account the influence of the boundary conditions of the second order shows that the magnitude of the velocity jump on the wall varies depending on the value of the parameter A2. The jump decreases with a positive value of A2, with a negative value - increases in comparison with the case A2 = 0 (first order boundary conditions). Qualitatively similar effects of porosity and second-order boundary conditions were also observed with respect to temperature profiles. The results of the calculation of the relative Nusselt number showed that the decrease in porosity contributes to the intensification of heat transfer. The dynamics of the change in the heat transfer coefficient with an increase in the Knudsen number indicates that an increase in the Prandtl number also leads to an improvement in the thermal interaction of the flow with the channel wall. The analysis of taking into account the boundary conditions of the second order showed that at small values of the Prandtl number (Pr ≤ 1) the influence of the parameter A2 was not observed. At A2 < 0 the effects of the boundary conditions of the second order lead to an increase in the relative Nusselt number, whereas at A2> 0 the value of the normalized Nusselt number decreases in comparison with the case A2 = 0 (boundary conditions of the first order).


2021 ◽  
Author(s):  
Wen-Xiang Chen

In this paper, it is explained that the role of the cosmological constant in the De Sitter space is similar to that of the preset boundary conditions in the superradiation phenomenon. In the previous literature, superradiance at a given boundary condition can cause the uncertainty principle to be less extreme, and so the uncertainty principle to be less extreme without the given boundary condition, might be one way to prove that the universe is ds spacetime.


Author(s):  
Shaughan Lavine

In first-order predicate logic there are symbols for fixed individuals, relations and functions on a given universe of individuals and there are variables ranging over the individuals, with associated quantifiers. Second-order logic adds variables ranging over relations and functions on the universe of individuals, and associated quantifiers, which are called second-order variables and quantifiers. Sometimes one also adds symbols for fixed higher-order relations and functions among and on the relations, functions and individuals of the original universe. One can add third-order variables ranging over relations and functions among and on the relations, functions and individuals on the universe, with associated quantifiers, and so on, to yield logics of even higher order. It is usual to use proof systems for higher-order logics (that is, logics beyond first-order) that include analogues of the first-order quantifier rules for all quantifiers. An extensional n-ary relation variable in effect ranges over arbitrary sets of n-tuples of members of the universe. (Functions are omitted here for simplicity: remarks about them parallel those for relations.) If the set of sets of n-tuples of members of a universe is fully determined once the universe itself is given, then the truth-values of sentences involving second-order quantifiers are determined in a structure like the ones used for first-order logic. However, if the notion of the set of all sets of n-tuples of members of a universe is specified in terms of some theory about sets or relations, then the universe of a structure must be supplemented by specifications of the domains of the various higher-order variables. No matter what theory one adopts, there are infinitely many choices for such domains compatible with the theory over any infinite universe. This casts doubt on the apparent clarity of the notion of ‘all n-ary relations on a domain’: since the notion cannot be defined categorically in terms of the domain using any theory whatsoever, how could it be well-determined?


2004 ◽  
Vol 2004 (35) ◽  
pp. 1855-1879 ◽  
Author(s):  
Olga Vasilieva

This note is focused on a bounded control problem with boundary conditions. The control domain need not be convex. First-order necessary condition for optimality is obtained in the customary form of the maximum principle, and second-order necessary condition for optimality of singular controls is derived on the basis of second-order increment formula using the method of increments along with linearization approach.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Tran Huu Phat ◽  
Toan T. Nguyen

AbstractExploring the significant impacts of topological charge on the holographic phase transitions and conductivity we start from an Einstein–Maxwell system coupled with a charged scalar field in Anti-de Sitter spacetime. In our set up, the corresponding black hole (BH) is chosen to be the topological AdS one where the pressure is identified with the cosmological constant (Kubiznak and Mann in JHEP 7:33, 2012), then the AdS BH undergoes the phase transition from small to large BHs, which is totally similar to the transition from gas to liquid in the van der Waals theory. Our numerical computation shows that the process of condensation is favored at finite topological charge, in particular, the phase transition from small to large BHs in the bulk generates a mechanism for changing the order of phase transition in the boundary: the second order phase transitions occur at pressures higher than the critical pressure of the phase transition from small to large BHs while they become first order at lower pressures. This property is confirmed with the aid of holographic free energy. Finally, the frequency dependent conductivity exhibits an energy gap when the phase transition is second order and when the phase transition becomes first order this gap is either reduced or totally lost.


Sign in / Sign up

Export Citation Format

Share Document