scholarly journals Quasinormal modes of a semi-holographic black brane and thermalization

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Sukrut Mondkar ◽  
Ayan Mukhopadhyay ◽  
Anton Rebhan ◽  
Alexander Soloviev

Abstract We study the quasinormal modes and non-linear dynamics of a simplified model of semi-holography, which consistently integrates mutually interacting perturbative and strongly coupled holographic degrees of freedom such that the full system has a total conserved energy. We show that the thermalization of the full system can be parametrically slow when the mutual coupling is weak. For typical homogeneous initial states, we find that initially energy is transferred from the black brane to the perturbative sector, later giving way to complete transfer of energy to the black brane at a slow and constant rate, while the entropy grows monotonically for all time. Larger mutual coupling between the two sectors leads to larger extraction of energy from the black brane by the boundary perturbative system, but also quicker irreversible transfer of energy back to the black brane. The quasinormal modes replicate features of a dissipative system with a softly broken symmetry including the so-called k-gap. Furthermore, when the mutual coupling is below a critical value, there exists a hybrid zero mode with finite momentum which becomes unstable at higher values of momentum, indicating a Gregory-Laflamme type instability. This could imply turbulent equipartitioning of energy between the boundary and the holographic degrees of freedom in the presence of inhomogeneities.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Brandon S. DiNunno ◽  
Niko Jokela ◽  
Juan F. Pedraza ◽  
Arttu Pönni

Abstract We study in detail various information theoretic quantities with the intent of distinguishing between different charged sectors in fractionalized states of large-N gauge theories. For concreteness, we focus on a simple holographic (2 + 1)-dimensional strongly coupled electron fluid whose charged states organize themselves into fractionalized and coherent patterns at sufficiently low temperatures. However, we expect that our results are quite generic and applicable to a wide range of systems, including non-holographic. The probes we consider include the entanglement entropy, mutual information, entanglement of purification and the butterfly velocity. The latter turns out to be particularly useful, given the universal connection between momentum and charge diffusion in the vicinity of a black hole horizon. The RT surfaces used to compute the above quantities, though, are largely insensitive to the electric flux in the bulk. To address this deficiency, we propose a generalized entanglement functional that is motivated through the Iyer-Wald formalism, applied to a gravity theory coupled to a U(1) gauge field. We argue that this functional gives rise to a coarse grained measure of entanglement in the boundary theory which is obtained by tracing over (part) of the fractionalized and cohesive charge degrees of freedom. Based on the above, we construct a candidate for an entropic c-function that accounts for the existence of bulk charges. We explore some of its general properties and their significance, and discuss how it can be used to efficiently account for charged degrees of freedom across different energy scales.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Navid Abbasi ◽  
Matthias Kaminski

Abstract We consider a holographic thermal state and perturb it by a scalar operator whose associated real-time Green’s function has only gapped poles. These gapped poles correspond to the non-hydrodynamic quasinormal modes of a massive scalar perturbation around a Schwarzschild black brane. Relations between pole-skipping points, critical points and quasinormal modes in general emerge when the mass of the scalar and hence the dual operator dimension is varied. First, this novel analysis reveals a relation between the location of a mode in the infinite tower of quasinormal modes and the number of pole-skipping points constraining its dispersion relation at imaginary momenta. Second, for the first time, we consider the radii of convergence of the derivative expansions about the gapped quasinormal modes. These convergence radii turn out to be bounded from above by the set of all pole-skipping points. Furthermore, a transition between two distinct classes of critical points occurs at a particular value for the conformal dimension, implying close relations between critical points and pole-skipping points in one of those two classes. We show numerically that all of our results are also true for gapped modes of vector and tensor operators.


2020 ◽  
Vol 6 (9) ◽  
pp. eaay4213 ◽  
Author(s):  
Yang Hu ◽  
Fred Florio ◽  
Zhizhong Chen ◽  
W. Adam Phelan ◽  
Maxime A. Siegler ◽  
...  

Spin and valley degrees of freedom in materials without inversion symmetry promise previously unknown device functionalities, such as spin-valleytronics. Control of material symmetry with electric fields (ferroelectricity), while breaking additional symmetries, including mirror symmetry, could yield phenomena where chirality, spin, valley, and crystal potential are strongly coupled. Here we report the synthesis of a halide perovskite semiconductor that is simultaneously photoferroelectricity switchable and chiral. Spectroscopic and structural analysis, and first-principles calculations, determine the material to be a previously unknown low-dimensional hybrid perovskite (R)-(−)-1-cyclohexylethylammonium/(S)-(+)-1 cyclohexylethylammonium) PbI3. Optical and electrical measurements characterize its semiconducting, ferroelectric, switchable pyroelectricity and switchable photoferroelectric properties. Temperature dependent structural, dielectric and transport measurements reveal a ferroelectric-paraelectric phase transition. Circular dichroism spectroscopy confirms its chirality. The development of a material with such a combination of these properties will facilitate the exploration of phenomena such as electric field and chiral enantiomer–dependent Rashba-Dresselhaus splitting and circular photogalvanic effects.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 651
Author(s):  
Maxime Perdriat ◽  
Clément Pellet-Mary ◽  
Paul Huillery ◽  
Loïc Rondin ◽  
Gabriel Hétet

Controlling the motion of macroscopic oscillators in the quantum regime has been the subject of intense research in recent decades. In this direction, opto-mechanical systems, where the motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks to their very high isolation from the environment under ultra-low vacuum conditions. To enter the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have been proposed. At the single spin level, they offer the formidable prospect of transferring the spins’ inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists’ toolbox would enable access to a very rich playground at the crossroads between condensed matter and atomic physics. We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state and discuss the challenges ahead. Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that, once overcome, will enable these systems to unleash their full potential.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lei Sun ◽  
Minglei Yang ◽  
Baixiao Chen

Sparse planar arrays, such as the billboard array, the open box array, and the two-dimensional nested array, have drawn lots of interest owing to their ability of two-dimensional angle estimation. Unfortunately, these arrays often suffer from mutual-coupling problems due to the large number of sensor pairs with small spacing d (usually equal to a half wavelength), which will degrade the performance of direction of arrival (DOA) estimation. Recently, the two-dimensional half-open box array and the hourglass array are proposed to reduce the mutual coupling. But both of them still have many sensor pairs with small spacing d, which implies that the reduction of mutual coupling is still limited. In this paper, we propose a new sparse planar array which has fewer number of sensor pairs with small spacing d. It is named as the thermos array because its shape seems like a thermos. Although the resulting difference coarray (DCA) of the thermos array is not hole-free, a large filled rectangular part in the DCA can be facilitated to perform spatial-smoothing-based DOA estimation. Moreover, it enjoys closed-form expressions for the sensor locations and the number of available degrees of freedom. Simulations show that the thermos array can achieve better DOA estimation performance than the hourglass array in the presence of mutual coupling, which indicates that our thermos array is more robust to the mutual-coupling array.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1914
Author(s):  
Jian Xie ◽  
Qiuping Wang ◽  
Yuexian Wang ◽  
Xin Yang

Digital communication signals in wireless systems may possess noncircularity, which can be used to enhance the degrees of freedom for direction-of-arrival (DOA) estimation in sensor array signal processing. On the other hand, the electromagnetic characteristics between sensors in uniform rectangular arrays (URAs), such as mutual coupling, may significantly deteriorate the estimation performance. To deal with this problem, a robust real-valued estimator for rectilinear sources was developed to alleviate unknown mutual coupling in URAs. An augmented covariance matrix was built up by extracting the real and imaginary parts of observations containing the circularity and noncircularity of signals. Then, the actual steering vector considering mutual coupling was reparameterized to make the rank reduction (RARE) property available. To reduce the computational complexity of two-dimensional (2D) spectral search, we individually estimated y-axis and x-axis direction-cosines in two stages following the principle of RARE. Finally, azimuth and elevation angle estimates were determined from the corresponding direction-cosines respectively. Compared with existing solutions, the proposed method is more computationally efficient, involving real-valued operations and decoupled 2D spectral searches into twice those of one-dimensional searches. Simulation results verified that the proposed method provides satisfactory estimation performance that is robust to unknown mutual coupling and close to the counterparts based on 2D spectral searches, but at the cost of much fewer calculations.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
João G. F. Campos ◽  
Azadeh Mohammadi

Abstract The system consisting of a fermion in the background of a wobbling kink is studied in this paper. To investigate the impact of the wobbling on the fermion-kink interaction, we employ the time-dependent perturbation theory formalism in quantum mechanics. To do so, we compute the transition probabilities between states given in terms of the Bogoliubov coefficients. We derive Fermi’s golden rule for the model, which allows the transition to the continuum at a constant rate if the fermion-kink coupling constant is smaller than the wobbling frequency. Moreover, we study the system replacing the shape mode with a quasinormal mode. In this case, the transition rate to continuum decays in time due to the leakage of the mode, and the final transition probability decreases sharply for large coupling constants in a way that is analogous to Fermi’s golden rule. Throughout the paper, we compare the perturbative results with numerical simulations and show that they are in good agreement.


Nanophotonics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 295-308 ◽  
Author(s):  
Tomáš Neuman ◽  
Javier Aizpurua ◽  
Ruben Esteban

AbstractLocalised surface plasmons can couple strongly with the electronic transitions of a molecule, inducing new hybridised states of light and matter, the plasmon–exciton polaritons. Furthermore, molecules support vibrational degrees of freedom that interact with the electronic levels, giving rise to inelastic resonant Raman scattering under coherent laser illumination. Here we show the influence of strong plasmon–exciton coupling on resonant Raman processes that populate the vibrational states of the molecule and that lead to the characteristic surface-enhanced Raman scattering spectra. We develop analytical expressions that give insight into these processes for the case of moderate illumination intensity, weak electron–vibration coupling and no dephasing. These expressions help us to elucidate the twofold role of plasmon–exciton polaritons to pump the system efficiently and to enhance the Raman emission. Our results show a close analogy with the optomechanical process described for off-resonant Raman scattering but with a difference in the resonant reservoir. We also use full numerical calculations to study the effects reaching beyond these approximations and discuss the interplay between the fluorescence background and the Raman lines. Our results allow for better understanding and exploitation of the strong coupling regime in vibrational pumping and in the surface-enhanced resonant Raman scattering signal.


Author(s):  
W. Habchi ◽  
J. Issa

This paper presents a reduced full-system finite element solution of isothermal elastohydrodynamic (EHD) line contact problems. The proposed model is based on a full-system finite element resolution of the EHL equations: Reynolds, linear elasticity and load balance. A reduced model is proposed for the linear elasticity problem. For this, three different techniques are tested: the classical “Modal reduction” and “Ritz-vector” methods and a novel “EHL-basis” method. The reduction order in the first two appears to be insufficient and a large number of degrees of freedom is required in order to attain an acceptable solution. On the other hand, the “EHL-basis” method shows up to be much more efficient, requiring only a few degrees of freedom to compose the elastic deformation of the solid components. In addition, a comparison with the full model shows an order of magnitude cpu time gain with errors of the order of only 1‰ for the central and minimum film thicknesses.


Sign in / Sign up

Export Citation Format

Share Document