scholarly journals Scattering amplitudes for binary systems beyond GR

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Mariana Carrillo González ◽  
Claudia de Rham ◽  
Andrew J. Tolley

Abstract Amplitude methods have proven to be a promising technique to perform Post-Minkowskian calculations used as inputs to construct gravitational waveforms. In this paper, we show how these methods can be extended beyond the standard calculations in General Relativity with a minimal coupling to matter. As proof of principle, we consider spinless particles conformally coupled to a gravitational helicity-0 mode. We clarify the subtleties in the matching procedure that lead to the potential for conformally coupled matter. We show that in the probe particle limit, we can reproduce well known results for the field profile. With the scattering amplitudes at hand, we compute the conservative potential and scattering angle for the binary system. We find that the result is a non trivial expansion that involves not only the coupling strengths, but also a non trivial dependence on the energy/momentum of the scattered particles.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Dimitrios Kosmopoulos ◽  
Andres Luna

Abstract We obtain the quadratic-in-spin terms of the conservative Hamiltonian describing the interactions of a binary of spinning bodies in General Relativity through $$ \mathcal{O} $$ O (G2) and to all orders in velocity. Our calculation extends a recently-introduced framework based on scattering amplitudes and effective field theory to consider non-minimal coupling of the spinning objects to gravity. At the order that we consider, we establish the validity of the formula proposed in [1] that relates the impulse and spin kick in a scattering event to the eikonal phase.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Tomas Andrade ◽  
Christiana Pantelidou ◽  
Julian Sonner ◽  
Benjamin Withers

Abstract General relativity governs the nonlinear dynamics of spacetime, including black holes and their event horizons. We demonstrate that forced black hole horizons exhibit statistically steady turbulent spacetime dynamics consistent with Kolmogorov’s theory of 1941. As a proof of principle we focus on black holes in asymptotically anti-de Sitter spacetimes in a large number of dimensions, where greater analytic control is gained. We focus on cases where the effective horizon dynamics is restricted to 2+1 dimensions. We also demonstrate that tidal deformations of the horizon induce turbulent dynamics. When set in motion relative to the horizon a deformation develops a turbulent spacetime wake, indicating that turbulent spacetime dynamics may play a role in binary mergers and other strong-field phenomena.


2017 ◽  
Vol 32 (34) ◽  
pp. 1750183 ◽  
Author(s):  
Mustafa Salti ◽  
Oktay Aydogdu ◽  
Hilmi Yanar ◽  
Figen Binbay

The teleparallel alternative of general relativity which is based on torsion instead of curvature is considered as the gravitational sector to explore the dark universe. Inspired from the well-known Brans–Dicke gravity, here, we introduce a new proposal for the galactic dark energy effect. The new model includes a scalar field with self-interacting potential and a non-minimal coupling between the gravity and scalar field. Additionally, we analyze the idea via the Noether symmetry approach and thermodynamics.


2007 ◽  
Vol 16 (12a) ◽  
pp. 2319-2324 ◽  
Author(s):  
JAMES GRABER

LISA may make it possible to test the black-hole uniqueness theorems of general relativity, also called the no-hair theorems, by Ryan's method of detecting the quadrupole moment of a black hole using high-mass-ratio inspirals. This test can be performed more robustly by observing inspirals in earlier stages, where the simplifications used in making inspiral predictions by the perturbative and post-Newtonian methods are more nearly correct. Current concepts for future missions such as DECIGO and BBO would allow even more stringent tests by this same method. Recently discovered evidence supports the existence of intermediate-mass black holes (IMBHs). Inspirals of binary systems with one IMBH and one stellar-mass black hole would fall into the frequency band of proposed maximum sensitivity for DECIGO and BBO. This would enable us to perform the Ryan test more precisely and more robustly. We explain why tests based on observations earlier in the inspiral are more robust and provide preliminary estimates of possible optimal future observations.


Author(s):  
Robert F O'Connell

First, we examine how spin is treated in special relativity and the necessity of introducing spin supplementary conditions (SSC) and how they are related to the choice of a center-of-mass of a spinning particle. Next, we discuss quantum electrodynamics and the Foldy-Wouthuysen transformation which we note is a position operator identical to the Pryce-Newton-Wigner position operator. The classical version of the operators are shown to be essential for the treatment of classical relativistic particles in general relativity, of special interest being the case of binary systems (black holes/neutron stars) which emit gravitational radiation.


1997 ◽  
Vol 12 (35) ◽  
pp. 2683-2689 ◽  
Author(s):  
W. Kummer ◽  
H. Liebl ◽  
D. V. Vassilevich

It is well known that spherically symmetric reduction of general relativity (SSG) leads to non-minimally coupled scalar matter. We generalize (and correct) recent results to Hawking radiation for a class of dilaton models which share with the Schwarzschild black hole non-minimal coupling of scalar fields and the basic global structure. An inherent ambiguity of such models (if they differ from SSG) is discussed. However, for SSG we obtain the rather disquieting result of a negative Hawking flux at infinity, if the usual recipe for such calculations is applied.


2015 ◽  
Vol 12 (04) ◽  
pp. 1550040 ◽  
Author(s):  
Mariafelicia De Laurentis ◽  
Ivan De Martino

There are several approaches to extend General Relativity in order to explain the phenomena related to the Dark Matter and Dark Energy. These theories, generally called Extended Theories of Gravity, can be tested using observations coming from relativistic binary systems as PSR J0348 + 0432. Using a class of analytical f(R)-theories, one can construct the first time derivative of orbital period of the binary systems starting from a quadrupolar gravitational emission. Our aim is to set boundaries on the parameters of the theory in order to understand if they are ruled out, or not, by the observations on PSR J0348 + 0432. Finally, we have computed an upper limit on the graviton mass showing that agree with constraint coming from other observations.


2014 ◽  
Vol 11 (02) ◽  
pp. 1460003 ◽  
Author(s):  
Orfeu Bertolami ◽  
Jorge Páramos

We examine an extension of General Relativity with an explicit non-minimal coupling between matter and curvature. The purpose of this work is to present an overview of the implications of the latter to various contexts, ranging from astrophysical matter distributions to a cosmological setting. Various results are discussed, including the impact of this non-minimal coupling on the choice of Lagrangian density, on a mechanism to mimic galactic and cluster dark matter, on the possibility of accounting for the accelerated expansion of the Universe, energy density fluctuations and modifications to post-inflationary reheating. The equivalence between a model exhibiting a non-minimal coupling and multi-scalar-theories is also discussed.


2007 ◽  
Vol 3 (S246) ◽  
pp. 265-266
Author(s):  
J. M. B. Downing ◽  
R. Spurzem

AbstractStellar mass compact object binaries are promising sources of gravitational radiation for the current generation of ground-based detectors, VIRGO and LIGO. Accurate templates for gravitational waveforms are needed in order to extract an event from the VIRGO/LIGO data stream. In the case of relativistic, compact object binaries accurate orbital parameters are necessary in order to produce such templates. Binary systems are affected by their stellar environment and thus the parameters of the binary population of a dense star cluster will be different from those of the field population. We propose to investigate the parameters of relativistic binary populations in dense star clusters using direct N-body simulations with a Post-Newtonian treatment of general relativity for the close binaries.


Sign in / Sign up

Export Citation Format

Share Document