scholarly journals Maximally self-interacting dark matter: models and predictions

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Ayuki Kamada ◽  
Hee Jung Kim ◽  
Takumi Kuwahara

Abstract We study self-interacting dark matter (SIDM) scenarios, where the s-wave self-scattering cross section almost saturates the Unitarity bound. Such self-scattering cross sections are singly parameterized by the dark matter mass, and are featured by strong velocity dependence in a wide range of velocities. They may be indicated by observations of dark matter halos in a wide range of masses, from Milky Way’s dwarf spheroidal galaxies to galaxy clusters. We pin down the model parameters that saturates the Unitarity bound in well-motivated SIDM models: the gauged Lμ− Lτ model and composite asymmetric dark matter model. We discuss implications and predictions of such model parameters for cosmology like the H0 tension and dark-matter direct-detection experiments, and particle phenomenology like the beam-dump experiments.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Itay M. Bloch ◽  
Andrea Caputo ◽  
Rouven Essig ◽  
Diego Redigolo ◽  
Mukul Sholapurkar ◽  
...  

Abstract Motivated by the recent XENON1T results, we explore various new physics models that can be discovered through searches for electron recoils in $$ \mathcal{O} $$ O (keV)-threshold direct-detection experiments. First, we consider the absorption of axion-like particles, dark photons, and scalars, either as dark matter relics or being produced directly in the Sun. In the latter case, we find that keV mass bosons produced in the Sun provide an adequate fit to the data but are excluded by stellar cooling constraints. We address this tension by introducing a novel Chameleon-like axion model, which can explain the excess while evading the stellar bounds. We find that absorption of bosonic dark matter provides a viable explanation for the excess only if the dark matter is a dark photon or an axion. In the latter case, photophobic axion couplings are necessary to avoid X-ray constraints. Second, we analyze models of dark matter-electron scattering to determine which models might explain the excess. Standard scattering of dark matter with electrons is generically in conflict with data from lower-threshold experiments. Momentum-dependent interactions with a heavy mediator can fit the data with dark matter mass heavier than a GeV but are generically in tension with collider constraints. Next, we consider dark matter consisting of two (or more) states that have a small mass splitting. The exothermic (down)scattering of the heavier state to the lighter state can fit the data for keV mass splittings. Finally, we consider a subcomponent of dark matter that is accelerated by scattering off cosmic rays, finding that dark matter interacting though an $$ \mathcal{O} $$ O (100 keV)-mass mediator can fit the data. The cross sections required in this scenario are, however, typically challenged by complementary probes of the light mediator. Throughout our study, we implement an unbinned Monte Carlo analysis and use an improved energy reconstruction of the XENON1T events.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yoshihiko Abe ◽  
Takashi Toma ◽  
Koichi Yoshioka

Abstract A pseudo Nambu-Goldstone boson (pNGB) is a natural candidate of dark matter in that it avoids the severe direct detection bounds. We show in this paper that the pNGB has another different and interesting face with a higher symmetry breaking scale. Such large symmetry breaking is motivated by various physics beyond the standard model. In this case, the pNGB interaction is suppressed due to the Nambu-Goldstone property and the freeze-out production does not work even with sufficiently large portal coupling. We then study the pNGB dark matter relic abundance from the out-of-equilibrium production via feeble Higgs portal coupling. Further, a possibility is pursued the symmetry breaking scalar in the pNGB model plays the role of inflaton. The inflaton and dark matter are unified in a single field and the pNGB production from inflaton decay is inevitable. For these non-thermally produced relic abundance of pNGB dark matter and successful inflation, we find that the dark matter mass should be less than a few GeV in the wide range of the reheating temperature and the inflaton mass.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
G. Bélanger ◽  
A. Mjallal ◽  
A. Pukhov

AbstractDirect detection experiments obtain 90% upper limits on the elastic scattering cross sections of dark matter with nucleons assuming point-like interactions and standard astrophysical and cosmological parameters. In this paper we provide a recasting of the limits from XENON1T, PICO-60, CRESST-III and DarkSide-50 and include them in micrOMEGAs. The code can then be used to directly impose constraints from these experiments on generic dark matter models under different assumptions about the DM velocity distribution or on the nucleus form factors. Moreover, new limits on the elastic scattering cross sections can be obtained in the presence of a light t-channel mediator or of millicharged particles.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Chen-Kai Qiao ◽  
Shin-Ted Lin ◽  
Hsin-Chang Chi ◽  
Hai-Tao Jia

Abstract The millicharged particle has become an attractive topic to probe physics beyond the Standard Model. In direct detection experiments, the parameter space of millicharged particles can be constrained from the atomic ionization process. In this work, we develop the relativistic impulse approximation (RIA) approach, which can duel with atomic many-body effects effectively, in the atomic ionization process induced by millicharged particles. The formulation of RIA in the atomic ionization induced by millicharged particles is derived, and the numerical calculations are obtained and compared with those from free electron approximation and equivalent photon approximation. Concretely, the atomic ionizations induced by mllicharged dark matter particles and millicharged neutrinos in high-purity germanium (HPGe) and liquid xenon (LXe) detectors are carefully studied in this work. The differential cross sections, reaction event rates in HPGe and LXe detectors, and detecting sensitivities on dark matter particle and neutrino millicharge in next-generation HPGe and LXe based experiments are estimated and calculated to give a comprehensive study. Our results suggested that the next-generation experiments would improve 2-3 orders of magnitude on dark matter particle millicharge δχ than the current best experimental bounds in direct detection experiments. Furthermore, the next-generation experiments would also improve 2-3 times on neutrino millicharge δν than the current experimental bounds.


2002 ◽  
Vol 17 (12n13) ◽  
pp. 1829-1840 ◽  
Author(s):  
ALDO MORSELLI

The direct detection of annihilation products in cosmic rays offers an alternative way to search for supersymmetric dark matter particles candidates. The study of the spectrum of gamma-rays, antiprotons and positrons offers good possibilities to perform this search in a significant portion of the Minimal Supersymmetric Standard Model parameters space. In particular the EGRET team have seen a convincing signal for a strong excess of emission from the galactic center that have not easily explanation with standard processes. We will review the achievable limits with the experiment GLAST taking into accounts the LEP results and we will compare this method with the antiproton and positrons experiments, the direct underground detection and with future experiments at LHC.


2012 ◽  
Vol 2012 (07) ◽  
pp. 024-024 ◽  
Author(s):  
Ulrich Ellwanger ◽  
Pantelis Mitropoulos

Galaxies ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 90 ◽  
Author(s):  
Francesca Calore ◽  
Moritz Hütten ◽  
Martin Stref

Searches for “dark” subhaloes in gamma-ray point-like source catalogues are among promising strategies for indirect dark matter detection. Such a search is nevertheless affected by uncertainties related, on the one hand, to the modelling of the dark matter subhalo distribution in Milky-Way-like galaxies, and, on the other hand, to the sensitivity of gamma-ray instruments to the dark matter subhalo signals. In the present work, we assess the detectability of dark matter subhaloes in Fermi-LAT catalogues, taking into accounts uncertainties associated with the modelling of the galactic subhalo population. We use four different halo models bracketing a large set of uncertainties. For each model, adopting an accurate detection threshold of the LAT to dark matter subhalo signals and comparing model predictions with the number of unassociated point-sources in Fermi-LAT catalogues, we derive upper limits on the annihilation cross section as a function of dark matter mass. Our results show that, even in the best-case scenario (i.e., DMonly subhalo model), which does not include tidal disruption from baryons, the limits on the dark matter parameter space are less stringent than current gamma-ray limits from dwarf spheroidal galaxies. Comparing the results obtained with the different subhalo models, we find that baryonic effects on the subhalo population are significant and lead to dark matter constraints that are less stringent by a factor of ∼2 to ∼5. This uncertainty comes from the unknown resilience of dark matter subhaloes to tidal disruption.


2013 ◽  
Vol 28 (02) ◽  
pp. 1340008
Author(s):  
LESZEK ROSZKOWSKI ◽  
ENRICO MARIA SESSOLO ◽  
YUE-LIN SMING TSAI

In this talk we present our recent Bayesian analyses of the Constrained MSSM in which the model's parameter space is constrained by the CMS αT 1.1/fb data at the LHC, the XENON100 dark matter direct detection data, and Fermi-LAT γ-ray data from dwarf spheroidal galaxies (dSphs). We also show that the projected one-year sensitivities for annihilation-induced neutrinos from the Sun in the 86-string configuration of IceCube/DeepCore have the potential to yield additional constraining power on the parameter space of the CMSSM.


2018 ◽  
Vol 4 (6) ◽  
Author(s):  
Iason Baldes ◽  
Marco Cirelli ◽  
Paolo Panci ◽  
Kalliopi Petraki ◽  
Filippo Sala ◽  
...  

Dark matter (DM) coupled to light mediators has been invoked to resolve the putative discrepancies between collisionless cold DM and galactic structure observations. However, \gammaγ-ray searches and the CMB strongly constrain such scenarios. To ease the tension, we consider asymmetric DM. We show that, contrary to the common lore, detectable annihilations occur even for large asymmetries, and derive bounds from the CMB, \gammaγ-ray, neutrino and antiproton searches. We then identify the viable space for self-interacting DM. Direct detection does not exclude this scenario, but provides a way to test it.


Sign in / Sign up

Export Citation Format

Share Document