scholarly journals Relation between parity-even and parity-odd CFT correlation functions in three dimensions

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Sachin Jain ◽  
Renjan Rajan John

Abstract In this paper we relate the parity-odd part of two and three point correlation functions in theories with exactly conserved or weakly broken higher spin symmetries to the parity-even part which can be computed from free theories. We also comment on higher point functions.The well known connection of CFT correlation functions with de-Sitter amplitudes in one higher dimension implies a relation between parity-even and parity-odd amplitudes calculated using non-minimal interactions such as $$ {\mathcal{W}}^3 $$ W 3 and $$ {\mathcal{W}}^2\tilde{\mathcal{W}} $$ W 2 W ˜ . In the flat-space limit this implies a relation between parity-even and parity-odd parts of flat-space scattering amplitudes.

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Sachin Jain ◽  
Renjan Rajan John ◽  
Vinay Malvimat

Abstract In this article, we explicitly compute in momentum space the three and four-point correlation functions involving scalar and spinning operators in the free bosonic and the free fermionic theory in three dimensions. We also evaluate the five-point function of the scalar operator in the free bosonic theory. We discuss techniques which are more efficient than the usual PV reduction to evaluate one loop integrals. Our techniques can be easily generalised to momentum space correlators of complicated spinning operators and to higher point functions. The three dimensional fermionic theory has the interesting feature that the scalar operator $$ \overline{\psi}\psi $$ ψ ¯ ψ is odd under parity. To account for this, we develop a parity odd basis which is useful to write correlation functions involving spinning operators and an odd number of $$ \overline{\psi}\psi $$ ψ ¯ ψ operators. We further study higher spin (HS) equations in momentum space which are algebraic in nature and hence simpler than their position space counterparts. We use them to solve for three-point functions involving spinning operators without invoking conformal invariance. However, at the level of four-point functions, solving the HS equation requires additional constraints that come from conformal invariance and we could only verify that our explicit results solve the HS equation.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
António Antunes ◽  
Miguel S. Costa ◽  
João Penedones ◽  
Aaditya Salgarkar ◽  
Balt C. van Rees

Abstract The boundary correlation functions for a Quantum Field Theory (QFT) in an Anti-de Sitter (AdS) background can stay conformally covariant even if the bulk theory undergoes a renormalization group (RG) flow. Studying such correlation functions with the numerical conformal bootstrap leads to non-perturbative constraints that must hold along the entire flow. In this paper we carry out this analysis for the sine-Gordon RG flows in AdS2, which start with a free (compact) scalar in the UV and end with well-known massive integrable theories that saturate many S-matrix bootstrap bounds. We numerically analyze the correlation functions of both breathers and kinks and provide a detailed comparison with perturbation theory near the UV fixed point. Our bounds are often saturated to one or two orders in perturbation theory, as well as in the flat-space limit, but not necessarily in between.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Adil Belhaj ◽  
Hasan El Moumni ◽  
Karima Masmar

We investigate numerically fR gravity effects on certain AdS/CFT tools including holographic entanglement entropy and two-point correlation functions for a charged single accelerated Anti-de Sitter black hole in four dimensions. We find that both holographic entanglement entropy and two-point correlation functions decrease by increasing the acceleration parameter A, matching perfectly with literature. Taking into account the fR gravity parameter η, the decreasing scheme of the holographic quantities persist. However, we observe a transition-like point where the behavior of the holographic tools changes. Two regions meeting at such a transit-like point are shown up. In such a nomination, the first one is associated with slow accelerating black holes while the second one corresponds to a fast accelerating solution. In the first region, the holographic entanglement entropy and two-point correlation functions decrease by increasing the η parameter. However, the behavioral situation is reversed in the second one. Moreover, a cross-comparison between the entropy and the holographic entanglement entropy is presented, providing another counterexample showing that such two quantities do not exhibit similar behaviors.


1996 ◽  
Vol 11 (13) ◽  
pp. 1047-1059 ◽  
Author(s):  
S. GURUSWAMY ◽  
P. VITALE

We derive explicit forms of the two-point correlation functions of the O(N) nonlinear sigma model at the critical point, in the large-N limit, on various three-dimensional manifolds of constant curvature. The two-point correlation function, G(x, y), is the only n-point correlation function which survives in this limit. We analyze the short distance and long distance behaviors of G(x, y). It is shown that G(x, y) decays exponentially with the Riemannian distance on the spaces R2×S1, S1×S1×R, S2×R, H2×R. The decay on R3 is of course a power law. We show that the scale for the correlation length is given by the geometry of the space and therefore the long distance behavior of the critical correlation function is not necessarily a power law even though the manifold is of infinite extent in all directions; this is the case of the hyperbolic space where the radius of curvature plays the role of a scale parameter. We also verify that the scalar field in this theory is a primary field with weight [Formula: see text]; we illustrate this using the example of the manifold S2×R whose metric is conformally equivalent to that of R3–{0} up to a reparametrization.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Simone Giombi ◽  
Himanshu Khanchandani

Abstract Using the fact that flat space with a boundary is related by a Weyl transformation to anti-de Sitter (AdS) space, one may study observables in boundary conformal field theory (BCFT) by placing a CFT in AdS. In addition to correlation functions of local operators, a quantity of interest is the free energy of the CFT computed on the AdS space with hyperbolic ball metric, i.e. with a spherical boundary. It is natural to expect that the AdS free energy can be used to define a quantity that decreases under boundary renormalization group flows. We test this idea by discussing in detail the case of the large N critical O(N) model in general dimension d, as well as its perturbative descriptions in the epsilon-expansion. Using the AdS approach, we recover the various known boundary critical behaviors of the model, and we compute the free energy for each boundary fixed point, finding results which are consistent with the conjectured F-theorem in a continuous range of dimensions. Finally, we also use the AdS setup to compute correlation functions and extract some of the BCFT data. In particular, we show that using the bulk equations of motion, in conjunction with crossing symmetry, gives an efficient way to constrain bulk two-point functions and extract anomalous dimensions of boundary operators.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Mitsuhiro Kato ◽  
Kanji Nishii ◽  
Toshifumi Noumi ◽  
Toshiaki Takeuchi ◽  
Siyi Zhou

Abstract We study semiclassical spiky strings in de Sitter space and the corresponding Regge trajectories, generalizing the analysis in anti-de Sitter space. In particular we demonstrate that each Regge trajectory has a maximum spin due to de Sitter acceleration, similarly to the folded string studied earlier. While this property is useful for the spectrum to satisfy the Higuchi bound, it makes a nontrivial question how to maintain mildness of high-energy string scattering which we are familiar with in flat space and anti-de Sitter space. Our analysis implies that in order to have infinitely many higher spin states, one needs to consider infinitely many Regge trajectories with an increasing folding number.


2018 ◽  
Vol 175 ◽  
pp. 06030
Author(s):  
Antoine Gérardin ◽  
Jeremy Green ◽  
Oleksii Gryniuk ◽  
Georg von Hippel ◽  
Harvey B. Meyer ◽  
...  

We present our preliminary results on the calculation of hadronic light-by-light forward scattering amplitudes using vector four-point correlation functions computed on the lattice. Using a dispersive approach, forward scattering amplitudes can be described by γ*γ* → hadrons fusion cross sections and then compared with phenomenology. We show that only a few states are needed to reproduce our data. In particular, the sum rules considered in this study imply relations between meson–γγ couplings and provide valuable information about individual form factors which are often used to estimate the meson-pole contributions to the hadronic light-by-light contribution to the (g – 2) of the muon.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550052 ◽  
Author(s):  
M. Reza Tanhayi

Recently in [P. R. Anderson and E. Mottola, Phys. Rev. D 89 (2014) 104039, arXiv:1310.1963 [gr-qc] and P. R. Anderson and E. Mottola, Phys. Rev. D 89 (2014) 104038, arXiv:1310.0030 [gr-qc].], it was shown that global de Sitter space is unstable even to the massive particle creation with no self-interactions. In this paper, we study the instability by making use of the coordinate-independent plane wave in de Sitter space. Within this formalism, we show that the previous results of instability of de Sitter space due to the particle creation can be generalized to higher-spin fields in a straightforward way. The so-called plane wave is defined globally in de Sitter space and de Sitter invariance is manifest since such modes are deduced from the group theoretical point of view by means of the Casimir operators. In fact, we employ the symmetry of embedding space namely the 4 + 1-dimensional flat space to write the field equations and the solutions can be obtained in terms of the plane wave in embedding space.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Shai M. Chester ◽  
Michael B. Green ◽  
Silviu S. Pufu ◽  
Yifan Wang ◽  
Congkao Wen

Abstract We study the four-point function of the lowest-lying half-BPS operators in the $$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills theory and its relation to the flat-space four-graviton amplitude in type IIB superstring theory. We work in a large-N expansion in which the complexified Yang-Mills coupling τ is fixed. In this expansion, non-perturbative instanton contributions are present, and the SL(2, ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the mass-deformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the four-point correlator at separated points. In a normalization where the two-point functions are proportional to N2− 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the four-point correlator are proportional to the non-holomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB S-matrix arising from R4 and D4R4 contact inter-actions, which, for the R4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}-m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of non-holomorphic Eisenstein series with half-integer index, which are manifestly SL(2, ℤ) invariant.


Sign in / Sign up

Export Citation Format

Share Document