scholarly journals Context-dependent roles of YAP/TAZ in stem cell fates and cancer

Author(s):  
Lucy LeBlanc ◽  
Nereida Ramirez ◽  
Jonghwan Kim

AbstractHippo effectors YAP and TAZ control cell fate and survival through various mechanisms, including transcriptional regulation of key genes. However, much of this research has been marked by conflicting results, as well as controversy over whether YAP and TAZ are redundant. A substantial portion of the discordance stems from their contradictory roles in stem cell self-renewal vs. differentiation and cancer cell survival vs. apoptosis. In this review, we present an overview of the multiple context-dependent functions of YAP and TAZ in regulating cell fate decisions in stem cells and organoids, as well as their mechanisms of controlling programmed cell death pathways in cancer.

2017 ◽  
Author(s):  
Idse Heemskerk ◽  
Kari Burt ◽  
Matthew Miller ◽  
Sapna Chhabra ◽  
M. Cecilia Guerra ◽  
...  

During embryonic development, diffusible signaling molecules called morphogens are thought to determine cell fates in a concentration-dependent manner1–4, and protocols for directed stem cell differentiation are based on this picture5–8. However, in the mammalian embryo, morphogen concentrations change rapidly compared to the time for making cell fate decisions9–12. It is unknown how changing ligand levels are interpreted, and whether the precise timecourse of ligand exposure plays a role in cell fate decisions. Nodal and BMP4 are morphogens crucial for gastrulation in vertebrates13. Each pathway has distinct receptor complexes that phosphorylate specific signal transducers, known as receptor-Smads, which then complex with the shared cofactor Smad4 to activate target genes14. Here we show in human embryonic stem cells (hESCs) that the response to BMP4 signaling indeed is determined by the ligand concentration, but that unexpectedly, the expression of many mesodermal targets of Activin/Nodal depends on rate of concentration increase. In addition, we use live imaging of hESCs with GFP integrated at the endogenous SMAD4 locus to show that a stem cell model for the human embryo15 generates a wave of Nodal signaling. Cells experience rapidly increasing Nodal specifically in the region of mesendoderm differentiation. We also demonstrate that pulsatile stimulation with Activin induces repeated strong signaling and enhances mesoderm differentiation. Our results break with the paradigm of concentration-dependent differentiation and demonstrate an important role for morphogen dynamics in the cell fate decisions associated with mammalian gastrulation. They suggest a highly dynamic picture of embryonic patterning where some cell fates depend on rapid concentration increase rather than absolute levels, and point to ligand dynamics as a new dimension to optimize protocols for directed stem cell differentiation.


Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1491-1505
Author(s):  
D F Lyman ◽  
B Yedvobnick

Abstract The neurogenic Notch locus of Drosophila encodes a receptor necessary for cell fate decisions within equivalence groups, such as proneural clusters. Specification of alternate fates within clusters results from inhibitory communication among cells having comparable neural fate potential. Genetically, Hairless (H) acts as an antagonist of most neurogenic genes and may insulate neural precursor cells from inhibition. H function is required for commitment to the bristle sensory organ precursor (SOP) cell fate and for daughter cell fates. Using Notch gain-of-function alleles and conditional expression of an activated Notch transgene, we show that enhanced signaling produces H-like loss-of-function phenotypes by suppressing bristle SOP cell specification or by causing an H-like transformation of sensillum daughter cell fates. Furthermore, adults carrying Notch gain of function and H alleles exhibit synergistic enhancement of mutant phenotypes. Over-expression of an H+ transgene product suppressed virtually all phenotypes generated by Notch gain-of-function genotypes. Phenotypes resulting from over-expression of the H+ transgene were blocked by the Notch gain-of-function products, indicating a balance between Notch and H activity. The results suggest that H insulates SOP cells from inhibition and indicate that H activity is suppressed by Notch signaling.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2407
Author(s):  
Ruicen He ◽  
Arthur Dantas ◽  
Karl Riabowol

Acetylation of histones is a key epigenetic modification involved in transcriptional regulation. The addition of acetyl groups to histone tails generally reduces histone-DNA interactions in the nucleosome leading to increased accessibility for transcription factors and core transcriptional machinery to bind their target sequences. There are approximately 30 histone acetyltransferases and their corresponding complexes, each of which affect the expression of a subset of genes. Because cell identity is determined by gene expression profile, it is unsurprising that the HATs responsible for inducing expression of these genes play a crucial role in determining cell fate. Here, we explore the role of HATs in the maintenance and differentiation of various stem cell types. Several HAT complexes have been characterized to play an important role in activating genes that allow stem cells to self-renew. Knockdown or loss of their activity leads to reduced expression and or differentiation while particular HATs drive differentiation towards specific cell fates. In this study we review functions of the HAT complexes active in pluripotent stem cells, hematopoietic stem cells, muscle satellite cells, mesenchymal stem cells, neural stem cells, and cancer stem cells.


2020 ◽  
Author(s):  
Kira Allmeroth ◽  
Christine S. Kim ◽  
Andrea Annibal ◽  
Andromachi Pouikli ◽  
Carlos Andrés Chacón-Martínez ◽  
...  

AbstractStem cell differentiation is accompanied by an increase in mRNA translation. The rate of protein biosynthesis is influenced by the polyamines putrescine, spermidine, and spermine that are essential for cell growth and stem cell maintenance. However, the role of polyamines as endogenous effectors of stem cell fate and whether they act through translational control remains obscure. Here, we investigated the function of polyamines in stem cell fate decisions using hair follicle stem cell (HFSC) organoids. HFSCs showed lower translation rates than progenitor cells, and a forced suppression of translation by direct targeting of the ribosome or through specific depletion of natural polyamines elevated stemness. In addition, we identified N1-acetylspermidine as a novel parallel regulator of cell fate decisions, increasing proliferation without reducing translation. Overall, this study delineates the diverse routes of polyamine metabolism-mediated regulation of stem cell fate decisions.Key PointsLow mRNA translation rates characterize hair follicle stem cell (HFSC) stateDepletion of natural polyamines enriches HFSCs via reduced translationN1-acetylspermidine promotes HFSC state without reducing translationN1-acetylspermidine expands the stem cell pool through elevated proliferation


Author(s):  
Emma Carley ◽  
Rachel K. Stewart ◽  
Abigail Zieman ◽  
Iman Jalilian ◽  
Diane. E. King ◽  
...  

AbstractWhile the mechanisms by which chemical signals control cell fate have been well studied, how mechanical inputs impact cell fate decisions are not well understood. Here, using the well-defined system of keratinocyte differentiation in the skin, we examine whether and how direct force transmission to the nucleus regulates epidermal cell fate. Using a molecular biosensor, we find that tension on the nucleus through Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes requires integrin engagement in undifferentiated epidermal stem cells, and is released during differentiation concomitant with decreased tension on A-type lamins. LINC complex ablation in mice reveals that LINC complexes are required to repress epidermal differentiation in vivo and in vitro and influence accessibility of epidermal differentiation genes, suggesting that force transduction from engaged integrins to the nucleus plays a role in maintaining keratinocyte progenitors. This work reveals a direct mechanotransduction pathway capable of relaying adhesion-specific signals to regulate cell fate.


2020 ◽  
Author(s):  
Melissa J. MacPherson ◽  
Sarah L Erickson ◽  
Drayden Kopp ◽  
Pengqiang Wen ◽  
Mohammadreza Aghanoori ◽  
...  

Abstract The formation of the cerebral cortex requires balanced expansion and differentiation of neural progenitor cells, the fate choice of which requires regulation at many steps of gene expression. As progenitor cells often exhibit transcriptomic stochasticity, the ultimate output of cell fate-determining genes must be carefully controlled at the post-transcriptional level, but how this is orchestrated is poorly understood. Here we report that de novo missense variants in an RNA-binding protein CELF2 cause human cortical malformations and perturb neural progenitor cell fate decisions in mice by disrupting the nucleocytoplasmic transport of CELF2. In self-renewing neural progenitors, CELF2 is localized in the cytoplasm where it binds and coordinates mRNAs that encode cell fate regulators and neurodevelopmental disorder-related factors. The translocation of CELF2 into the nucleus releases mRNAs for translation and thereby triggers neural progenitor differentiation. Our results reveal a mechanism by which transport of CELF2 between discrete subcellular compartments orchestrates an RNA regulon to instruct cell fates in cerebral cortical development.


2017 ◽  
Vol 11 (1) ◽  
Author(s):  
Tao Peng ◽  
Linan Liu ◽  
Adam L MacLean ◽  
Chi Wut Wong ◽  
Weian Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document