scholarly journals The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation

Author(s):  
Emma Carley ◽  
Rachel K. Stewart ◽  
Abigail Zieman ◽  
Iman Jalilian ◽  
Diane. E. King ◽  
...  

AbstractWhile the mechanisms by which chemical signals control cell fate have been well studied, how mechanical inputs impact cell fate decisions are not well understood. Here, using the well-defined system of keratinocyte differentiation in the skin, we examine whether and how direct force transmission to the nucleus regulates epidermal cell fate. Using a molecular biosensor, we find that tension on the nucleus through Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes requires integrin engagement in undifferentiated epidermal stem cells, and is released during differentiation concomitant with decreased tension on A-type lamins. LINC complex ablation in mice reveals that LINC complexes are required to repress epidermal differentiation in vivo and in vitro and influence accessibility of epidermal differentiation genes, suggesting that force transduction from engaged integrins to the nucleus plays a role in maintaining keratinocyte progenitors. This work reveals a direct mechanotransduction pathway capable of relaying adhesion-specific signals to regulate cell fate.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Emma Carley ◽  
Rachel Stewart ◽  
Abigail G Zieman ◽  
Iman Jalilian ◽  
Diane E King ◽  
...  

While the mechanisms by which chemical signals control cell fate have been well studied, how mechanical inputs impact cell fate decisions are not well understood. Here, using the well-defined system of keratinocyte differentiation in the skin, we examine whether and how direct force transmission to the nucleus regulates epidermal cell fate. Using a molecular biosensor, we find that tension on the nucleus through Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes requires integrin engagement in undifferentiated epidermal stem cells, and is released during differentiation concomitant with decreased tension on A-type lamins. LINC complex ablation in mice reveals that LINC complexes are required to repress epidermal differentiation in vivo and in vitro and influence accessibility of epidermal differentiation genes, suggesting that force transduction from engaged integrins to the nucleus plays a role in maintaining keratinocyte progenitors. This work reveals a direct mechanotransduction pathway capable of relaying adhesion-specific signals to regulate cell fate.


2012 ◽  
Vol 199 (2) ◽  
pp. 347-363 ◽  
Author(s):  
Ivano Amelio ◽  
Anna Maria Lena ◽  
Giuditta Viticchiè ◽  
Ruby Shalom-Feuerstein ◽  
Alessandro Terrinoni ◽  
...  

During keratinocyte differentiation and stratification, cells undergo extensive remodeling of their actin cytoskeleton, which is important to control cell mobility and to coordinate and stabilize adhesive structures necessary for functional epithelia. Limited knowledge exists on how the actin cytoskeleton is remodeled in epithelial stratification and whether cell shape is a key determinant to trigger terminal differentiation. In this paper, using human keratinocytes and mouse epidermis as models, we implicate miR-24 in actin adhesion dynamics and demonstrate that miR-24 directly controls actin cable formation and cell mobility. miR-24 overexpression in proliferating cells was sufficient to trigger keratinocyte differentiation both in vitro and in vivo and directly repressed cytoskeletal modulators (PAK4, Tks5, and ArhGAP19). Silencing of these targets recapitulated the effects of miR-24 overexpression. Our results uncover a new regulatory pathway involving a differentiation-promoting microribonucleic acid that regulates actin adhesion dynamics in human and mouse epidermis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1370-1370
Author(s):  
Melanie G Cornejo ◽  
Thomas Mercher ◽  
Joseph D. Growney ◽  
Jonathan Jesneck ◽  
Ivan Maillard ◽  
...  

Abstract The Notch signaling pathway is involved in a broad spectrum of cell fate decisions during development, and in the hematopoietic system, it is known to favor T cell- vs B cell lineage commitment. However, its role in myeloid lineage development is less well understood. We have shown, using heterotypic co-cultures of murine primary hematopoietic stem cells (Lin-Sca-1+ckit+ HSCs) and OP9 stromal cells expressing the Notch ligand Delta1 (OP9-DL1), that Notch signaling derived from cell non-autonomous cues acts as a positive regulator of megakaryocyte fate from LSK cells. Bone marrow transplantation experiments with a constitutively active Notch mutant resulted in enhanced megakaryopoiesis in vivo, with increased MEP numbers and megakaryocyte colony formation. In contrast, expression of dnMAML using a conditional ROSA26 knock-in mouse model significantly impaired megakaryopoiesis in vivo, with a marked decrease in megakaryocyte progenitors. In order to understand the cellular differentiation pathways controlled by Notch, we first examined the ability of various purified progenitor populations to differentiate toward megakaryocytes upon Notch stimulation in vitro. We observed that CMP and MEP, but not GMP, can engage megakaryopoiesis upon Notch stimulation. Our results were consistent with expression analysis of Notch signaling genes in these purified progenitors and were supported by the observation that transgenic Notch reporter mice display higher levels of reporter (i.e. GFP) expression in HSC and MEP, vs. CMP and GMP in vivo. Furthermore, purified progenitors with high GFP expression gave rise to increased numbers of megakarocyte-containing colonies when plated in vitro compared to GFP-negative progenitors. In addition, further purification of the HSC population into long-term (LT), short-term (ST), and lymphoid-primed myeloid progenitors (LMPP) before plating on OP9-DL1 stroma showed that LMPP have a reduced ability to give rise to megakaryocytes compared to the other two populations. These data support the hypothesis that there is an early commitment to erythro/megakaryocytic fate from HSC prior to lymphoid commitment. To gain insight into the molecular mechanism underlying Notch-induced megakaryopoiesis, we performed global gene expression analysis that demonstrated the engagement of a megakaryopoietic transcriptional program when HSC were co-cultured with OP9-DL1 vs. OP9 stroma or OP9-DL1 treated with gamma-secretase inhibitor. Of interest, Runx1 was among the most upregulated genes in HSC co-cultured on OP9-DL1 stroma. To assess whether Notch signaling engages megakaryocytic fate through induction of Runx1, we plated HSC from Runx1 −/− mice on OP9-DL1 stroma. Compared to WT cells, Runx1 −/− HSC had a severely reduced ability to develop into CD41+ cells. In contrast, overexpression of Runx1 in WT HSC was sufficient to induce megakaryocyte fate on OP9 stroma without Notch stimulation. Together, our results indicate that Notch pathway activation induced by stromal cells is an important regulator of cell fate decisions in early progenitors. We show that Notch signaling is upstream of Runx1 during Notch-induced megakaryocyte differentiation and that Runx1 is an essential target of Notch signaling. We believe that these results provide important insight into the pathways controlling megakaryocyte differentiation, and may have important therapeutic potential for megakaryocyte lineage-related disorders.


2002 ◽  
Vol 22 (8) ◽  
pp. 2830-2841 ◽  
Author(s):  
Kevin G. Leong ◽  
Xiaolong Hu ◽  
Linheng Li ◽  
Michela Noseda ◽  
Bruno Larrivée ◽  
...  

ABSTRACT Notch4 is a member of the Notch family of transmembrane receptors that is expressed primarily on endothelial cells. Activation of Notch in various cell systems has been shown to regulate cell fate decisions. The sprouting of endothelial cells from microvessels, or angiogenesis, involves the modulation of the endothelial cell phenotype. Based on the function of other Notch family members and the expression pattern of Notch4, we postulated that Notch4 activation would modulate angiogenesis. Using an in vitro endothelial-sprouting assay, we show that expression of constitutively active Notch4 in human dermal microvascular endothelial cells (HMEC-1) inhibits endothelial sprouting. We also show that activated Notch4 inhibits vascular endothelial growth factor (VEGF)-induced angiogenesis in the chick chorioallantoic membrane in vivo. Activated Notch4 does not inhibit HMEC-1 proliferation or migration through fibrinogen. However, migration through collagen is inhibited. Our data show that Notch4 cells exhibit increased β1-integrin-mediated adhesion to collagen. HMEC-1 expressing activated Notch4 do not have increased surface expression of β1-integrins. Rather, we demonstrate that Notch4-expressing cells display β1-integrin in an active, high-affinity conformation. Furthermore, using function-activating β1-integrin antibodies, we demonstrate that activation of β1-integrins is sufficient to inhibit VEGF-induced endothelial sprouting in vitro and angiogenesis in vivo. Our findings suggest that constitutive Notch4 activation in endothelial cells inhibits angiogenesis in part by promoting β1-integrin-mediated adhesion to the underlying matrix.


Development ◽  
1997 ◽  
Vol 124 (5) ◽  
pp. 1055-1067 ◽  
Author(s):  
Z.D. Ezzeddine ◽  
X. Yang ◽  
T. DeChiara ◽  
G. Yancopoulos ◽  
C.L. Cepko

Lineage analyses of vertebrate retinae have led to the suggestions that cell fate decisions are made during or after the terminal cell division and that extrinsic factors can influence fate choices. The evidence for a role of extrinsic factors is strongest for development of rodent rod photoreceptors ('rods'). In an effort to identify molecules that may regulate rod development, a number of known factors were assayed in vitro. Ciliary neurotrophic factor (CNTF) was found to have a range of effects on retinal cells. Addition of CNTF to postnatal rat retinal explants resulted in a dramatic reduction in the number of differentiating rods. Conversly, the number of cells expressing markers of bipolar cell differentiation was increased to a level not normally seen in vivo or in vitro. In addition, a small increase in the percentage of cells expressing either a marker of amacrine cells or a marker of Muller glia was noted. It was determined that many of the cells that would normally differentiate into rods were the cells that differentiated as bipolar cells in the presence of CNTF. Prospective rod photoreceptors could make this change even when they were postmitotic, indicating that at least a subset of cells fated to be rods were not committed to this fate at the time they were born. These findings highlight the distinction between cell fate and commitment. Resistance to the effect of CNTF on rod differentiation occurred at about the time that a cell began to express opsin. The time of commitment to terminal rod differentiation may thus coincide with the initiation of opsin expression. In agreement with the hypothesis that CNTF plays a role in rod differentiation in vivo, a greater percentage of cells were observed differentiating as rod photoreceptors in mouse retinal explants lacking a functional CNTF receptor, relative to wild-type littermates.


Endocrinology ◽  
2008 ◽  
Vol 149 (8) ◽  
pp. 3890-3899 ◽  
Author(s):  
Stefano Zanotti ◽  
Anna Smerdel-Ramoya ◽  
Lisa Stadmeyer ◽  
Deena Durant ◽  
Freddy Radtke ◽  
...  

Notch receptors are determinants of cell fate decisions. To define the role of Notch in the adult skeleton, we created transgenic mice overexpressing the Notch intracellular domain (NICD) under the control of the type I collagen promoter. First-generation transgenics were small and osteopenic. Bone histomorphometry revealed that NICD caused a decrease in bone volume, secondary to a reduction in trabecular number; osteoblast and osteoclast number were decreased. Low fertility of founder mice and lethality of young pups did not allow the complete establishment of transgenic lines. To characterize the effect of Notch overexpression in vitro, NICD was induced in osteoblasts and stromal cells from Rosanotch mice, in which a STOP cassette flanked by loxP sites is upstream of NICD, by transduction with an adenoviral vector expressing Cre recombinase (Cre) under the control of the cytomegalovirus (CMV) promoter (Ad-CMV-Cre). NICD impaired osteoblastogenesis and inhibited Wnt/β-catenin signaling. To determine the effects of notch1 deletion in vivo, mice in which notch1 was flanked by loxP sequences (notch1loxP/loxP) were mated with mice expressing Cre recombinase under the control of the osteocalcin promoter. Conditional null notch1 mice had no obvious skeletal phenotype, possibly because of rescue by notch2; however, 1-month-old females exhibited a modest increase in osteoclast surface and eroded surface. Osteoblasts from notch1loxP/loxP mice, transduced with Ad-CMV-Cre and transfected with Notch2 small interfering RNA, displayed increased alkaline phosphatase activity. In conclusion, Notch signaling in osteoblasts causes osteopenia and impairs osteo-blastogenesis by inhibiting the Wnt/β-catenin pathway.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi193-vi193
Author(s):  
Jamie Zagozewski ◽  
Ghazaleh Shahriary ◽  
Ludivine Morrison ◽  
Margaret Stromecki ◽  
Agnes Fresnoza ◽  
...  

Abstract The majority of Group 3 medulloblastomas (MB) exhibit amplification or increased expression of OTX2. OTX2 is primarily known as an oncogenic driver of tumor growth and cell cycle progression in Group 3 MB; however, its role as a repressor of differentiation is poorly characterized. Therefore, we utilized extensive patient data and mapped Group 3 MB chromatin dynamics in stem cell-enriched cultures to evaluate the divergent role of OTX2 in cell fate decisions in Group 3 MB pathogenesis. Several PAX genes were identified as novel OTX2 targets in Group 3 MB. Examination of patient data revealed that PAX3 and PAX6 expression is significantly reduced in Group 3 MB patients and is associated with significantly reduced survival. Functional evaluation of PAX3 and PAX6 expression showed that PAX3 expression significantly reduced self-renewal capacity of Group 3 MB tumorspheres in vitro and significantly prolonged survival and reduced tumor size in orthotopic xenograft models in vivo. RNA-sequencing of PAX3 and PAX6 gain of function (GOF) tumorspheres revealed mTORC1 signalling was specifically downregulated in PAX3 GOF, indicating this pathway may be critical for the survival and self-renewal differences observed between PAX3/PAX6 GOF models. Treatment of Group 3 MB with mTOR inhibitors reduced self-renewal in vitro and significantly prolonged survival and reduced tumor size in vivo. To further evaluate the role for this signalling axis in the Group 3 MB neural lineage hierarchy, we carried out scRNA-sequencing in tumorspheres from 4 Group 3 MB cell lines. Interestingly, a broad range of OTX2 expression was observed across single cell clusters, suggesting distinct OTX2 regulatory hierarchies are present in Group 3 MB. Collectively, our work demonstrates the multifaceted role of OTX2 as a regulator of cell fate decisions in Group 3 MB and identifies a novel role for mTORC1 signalling in Group 3 MB self-renewal and differentiation.


Development ◽  
2020 ◽  
Vol 147 (21) ◽  
pp. dev187187
Author(s):  
Hannah K. Vanyai ◽  
Fabrice Prin ◽  
Oriane Guillermin ◽  
Bishara Marzook ◽  
Stefan Boeing ◽  
...  

ABSTRACTThe Hippo-YAP/TAZ pathway is an important regulator of tissue growth, but can also control cell fate or tissue morphogenesis. Here, we investigate the function of the Hippo pathway during the development of cartilage, which forms the majority of the skeleton. Previously, YAP was proposed to inhibit skeletal size by repressing chondrocyte proliferation and differentiation. We find that, in vitro, Yap/Taz double knockout impairs murine chondrocyte proliferation, whereas constitutively nuclear nls-YAP5SA accelerates proliferation, in line with the canonical role of this pathway in most tissues. However, in vivo, cartilage-specific knockout of Yap/Taz does not prevent chondrocyte proliferation, differentiation or skeletal growth, but rather results in various skeletal deformities including cleft palate. Cartilage-specific expression of nls-YAP5SA or knockout of Lats1/2 do not increase cartilage growth, but instead lead to catastrophic malformations resembling chondrodysplasia or achondrogenesis. Physiological YAP target genes in cartilage include Ctgf, Cyr61 and several matrix remodelling enzymes. Thus, YAP/TAZ activity controls chondrocyte proliferation in vitro, possibly reflecting a regenerative response, but is dispensable for chondrocyte proliferation in vivo, and instead functions to control cartilage morphogenesis via regulation of the extracellular matrix.


Blood ◽  
2001 ◽  
Vol 97 (7) ◽  
pp. 1960-1967 ◽  
Author(s):  
Francis N. Karanu ◽  
Barbara Murdoch ◽  
Tomoyuki Miyabayashi ◽  
Mitsuhara Ohno ◽  
Masahide Koremoto ◽  
...  

Delta-mediated Notch signaling controls cell fate decisions during invertebrate and murine development. However, in the human, functional roles for Delta have yet to be described. This study reports the characterization of Delta-1 and Delta-4 in the human. Human Delta-4 was found to be expressed in a wide range of adult and fetal tissues, including sites of hematopoiesis. Subsets of immature hematopoietic cells, along with stromal and endothelial cells that support hematopoiesis, were shown to express Notch and both Delta-1 and Delta-4. Soluble forms of human Delta-1 (hDelta-1) and hDelta-4 proteins were able to augment the proliferation of primitive human hematopoietic progenitors in vitro. Intravenous transplantation of treated cultures into immune-deficient mice revealed that hDelta-1 is capable of expanding pluripotent human hematopoietic repopulating cells detected in vivo. This study provides the first evidence for a role of Delta ligands as a mitogenic regulator of primitive hematopoietic cells in the human.


Blood ◽  
2019 ◽  
Vol 133 (13) ◽  
pp. 1406-1414 ◽  
Author(s):  
Dirk Loeffler ◽  
Timm Schroeder

Abstract Cells and the molecular processes underlying their behavior are highly dynamic. Understanding these dynamic biological processes requires noninvasive continuous quantitative single-cell observations, instead of population-based average or single-cell snapshot analysis. Ideally, single-cell dynamics are measured long-term in vivo; however, despite progress in recent years, technical limitations still prevent such studies. On the other hand, in vitro studies have proven to be useful for answering long-standing questions. Although technically still demanding, long-term single-cell imaging and tracking in vitro have become valuable tools to elucidate dynamic molecular processes and mechanisms, especially in rare and heterogeneous populations. Here, we review how continuous quantitative single-cell imaging of hematopoietic cells has been used to solve decades-long controversies. Because aberrant cell fate decisions are at the heart of tissue degeneration and disease, we argue that studying their molecular dynamics using quantitative single-cell imaging will also improve our understanding of these processes and lead to new strategies for therapies.


Sign in / Sign up

Export Citation Format

Share Document