scholarly journals Systems biology of resurrection plants

Author(s):  
Tsanko Gechev ◽  
Rafe Lyall ◽  
Veselin Petrov ◽  
Dorothea Bartels

AbstractPlant species that exhibit vegetative desiccation tolerance can survive extreme desiccation for months and resume normal physiological activities upon re-watering. Here we survey the recent knowledge gathered from the sequenced genomes of angiosperm and non-angiosperm desiccation-tolerant plants (resurrection plants) and highlight some distinct genes and gene families that are central to the desiccation response. Furthermore, we review the vast amount of data accumulated from analyses of transcriptomes and metabolomes of resurrection species exposed to desiccation and subsequent rehydration, which allows us to build a systems biology view on the molecular and genetic mechanisms of desiccation tolerance in plants.

2020 ◽  
Vol 23 (8) ◽  
pp. 958-963 ◽  
Author(s):  
L. S. Samarina ◽  
L. S. Malyukova ◽  
M. V. Gvasaliya ◽  
A. M. Efremov ◽  
V. I. Malyarovskaya ◽  
...  

The article reviews the latest studies showing the diversity of genetic mechanisms and gene families underlying the increased cold and frost tolerance of tea and other plant species. It has been shown that cell responses to chilling (0…+15°C) and freezing (< 0°C) are not the same and gene expression under cold stress is genotype-specific. In recent decades, progress has been made in understanding the genetic mechanisms underlying the cold response of plants – ICE1 (inducer of CBF expression 1), CBF (C-repeat-binding factor), COR (cold-regulated genes) pathways and signaling have been discovered. The ICE, CBF and DHN gene groups play a key role in the cold acclimation of the tea plant. The accumulation of CBF transcripts occurs after 15 min of chilling induction, and longer cold stress leads to accumulation of CBF transcripts. It is shown that the transcripts of the CsDHN1, CsDHN2 and CsDHN3 genes accumulate at a higher level in resistant genotypes of tea in comparison with susceptible cultivars during freezing. CBF-independent pathways include genes involved in metabolism and transcription factors such as HSFC1, ZAT12, CZF1, PLD (phospholipase D), WRKY, HD-Zip, CsLEA, LOX, NAC, HSP, which are widely distributed in plants and are involved in the basic mechanisms of tea resistance to cold and frost. The most recent studies show an important role of miRNA in the mechanisms of response to chilling and freezing in tea. The data obtained on different plant species may correlate with the mechanisms of frost tolerance of tea and are the basis for future studies of the signaling pathways of response to cold in the tea plant. The results of the research emphasize the need to further explore the ways in which various genes regulate the tolerance of tea to cold stress to find the molecular markers of frost tolerance.


Agronomy ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 146 ◽  
Author(s):  
Cecilia Blomstedt ◽  
Cara Griffiths ◽  
Donald Gaff ◽  
John Hamill ◽  
Alan Neale

The majority of flowering-plant species can survive complete air-dryness in their seed and/or pollen. Relatively few species (‘resurrection plants’) express this desiccation tolerance in their foliage. Knowledge of the regulation of desiccation tolerance in resurrection plant foliage is reviewed. Elucidation of the regulatory mechanism in resurrection grasses may lead to identification of genes that can improve stress tolerance and yield of major crop species. Well-hydrated leaves of resurrection plants are desiccation-sensitive and the leaves become desiccation tolerant as they are drying. Such drought-induction of desiccation tolerance involves changes in gene-expression causing extensive changes in the complement of proteins and the transition to a highly-stable quiescent state lasting months to years. These changes in gene-expression are regulated by several interacting phytohormones, of which drought-induced abscisic acid (ABA) is particularly important in some species. Treatment with only ABA induces desiccation tolerance in vegetative tissue of Borya constricta Churchill. and Craterostigma plantagineum Hochstetter. but not in the resurrection grass Sporobolus stapfianus Gandoger. Suppression of drought-induced senescence is also important for survival of drying. Further research is needed on the triggering of the induction of desiccation tolerance, on the transition between phases of protein synthesis and on the role of the phytohormone, strigolactone and other potential xylem-messengers during drying and rehydration.


2020 ◽  
Vol 71 (1) ◽  
pp. 435-460 ◽  
Author(s):  
Melvin J. Oliver ◽  
Jill M. Farrant ◽  
Henk W.M. Hilhorst ◽  
Sagadevan Mundree ◽  
Brett Williams ◽  
...  

Desiccation of plants is often lethal but is tolerated by the majority of seeds and by vegetative tissues of only a small number of land plants. Desiccation tolerance is an ancient trait, lost from vegetative tissues following the appearance of tracheids but reappearing in several lineages when selection pressures favored its evolution. Cells of all desiccation-tolerant plants and seeds must possess a core set of mechanisms to protect them from desiccation- and rehydration-induced damage. This review explores how desiccation generates cell damage and how tolerant cells assuage the complex array of mechanical, structural, metabolic, and chemical stresses and survive.Likewise, the stress of rehydration requires appropriate mitigating cellular responses. We also explore what comparative genomics, both structural and responsive, have added to our understanding of cellular protection mechanisms induced by desiccation, and how vegetative desiccation tolerance circumvents destructive, stress-induced cell senescence.


2012 ◽  
Vol 69 (19) ◽  
pp. 3175-3186 ◽  
Author(s):  
Tsanko S. Gechev ◽  
Challabathula Dinakar ◽  
Maria Benina ◽  
Valentina Toneva ◽  
Dorothea Bartels

2019 ◽  
Author(s):  
Anna-Lena Van de Weyer ◽  
Freddy Monteiro ◽  
Oliver J. Furzer ◽  
Marc T. Nishimura ◽  
Volkan Cevik ◽  
...  

AbstractDisease is both among the most important selection pressures in nature and among the main causes of yield loss in agriculture. In plants, resistance to disease is often conferred by Nucleotide-binding Leucine-rich Repeat (NLR) proteins. These proteins function as intracellular immune receptors that recognize pathogen proteins and their effects on the plant. Consistent with evolutionarily dynamic interactions between plants and pathogens, NLRs are known to be encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define the majority of the Arabidopsis thaliana species-wide “NLRome”. From NLR sequence enrichment and long-read sequencing of 65 diverse A. thaliana accessions, we infer that the pan-NLRome saturates with approximately 40 accessions. Despite the high diversity of NLRs, half of the pan-NLRome is present in most accessions. We chart the architectural diversity of NLR proteins, identify novel architectures, and quantify the selective forces that act on specific NLRs, domains, and positions. Our study provides a blueprint for defining the pan-NLRome of plant species.


Sign in / Sign up

Export Citation Format

Share Document