scholarly journals Geophysical Evaluation of Effectiveness of Blasting for Roof Caving During Longwall Mining of Coal Seam

2019 ◽  
Vol 177 (2) ◽  
pp. 905-917 ◽  
Author(s):  
Łukasz Wojtecki ◽  
Petr Konicek ◽  
Maciej J. Mendecki ◽  
Iwona Gołda ◽  
Wacław M. Zuberek

Abstract Deep longwall mining of coal seams is made in the Upper Silesian Coal Basin (USCB) under complicated and mostly unfavourable geological and mining conditions. Usually, it is correlated with rockburst hazard mostly at a high level. One of the geological factors affecting the state of rockburst hazard is the presence of competent rocks in the roof of extracted coal seams, so rock falling behind the longwall face does not occur, and hanging-up of roof rocks remains. The long-lasting absence of caving may lead to an occurrence of high-energy tremor in the vicinity of the longwall face. Roof caving behind the longwall face may be forced by blasting. The column of explosives is then located in blastholes drilled in layers of roof rocks, e.g. sandstones behind the longwall face. In this article, a characterization of tremors initiated by blasts for roof caving during underground extraction of coal seam no. 507 in one of the collieries in the USCB has been made using three independent methods. By the basic seismic effect method, the effectiveness of blasting is evaluated according to the seismic energy of incited tremors and mass of explosives used. According to this method, selected blasts gave extremely good or excellent effect. An inversion of the seismic moment tensor enables determining the processes happening in the source of tremors. In the foci of provoked tremors the slip mechanism dominated or was clearly distinguished. The expected explosion had lesser significance or was not present. By the seismic source parameters analysis, among other things, an estimation of the stress drop in the focus or its size may be determined. The stress drop in the foci of provoked tremors was in the order of 105 Pa and the source radius, according to the Brune’s model, varied from 44.3 to 64.5 m. The results of the three mentioned methods were compared with each other and observations in situ. In all cases the roof falling was forced.

2019 ◽  
Vol 16 (3) ◽  
pp. 559-570 ◽  
Author(s):  
Weibing Zhu ◽  
Xiangrui Qi ◽  
Jinfeng Ju ◽  
Jingmin Xu

Abstract Safe and efficient mining of shallow coal seams relies on the understanding and effective control of strata behaviour. Field measurements, theoretical analysis and numerical simulations are presented in this study to investigate the mechanism behind abnormal strata behaviour, such as roof collapse and severe roadway deformation, that occurs in high longwall face-ends under shallow cover. We observed that coal pillars with two sides being mined out become unstable when the cover depth exceeds a certain value. The instability of the coal pillar can alter the fracture line of the overlying strata, triggering a reversed rotation of the ‘curved triangle blocks’ that form after the breakage of the overlying main roof. The revolving blocks apply stress on the roof strata directly above the longwall face-end, resulting in roof collapse. The collapse of both the coal pillars and the roof also leads to the advancement and increase of the overlying abutment pressure, which further causes severe roadway deformation in front of the working face. The strong strata behaviour that occurs in high longwall face-ends with shallow cover is presented in this study and countermeasures are proposed, such as widening or strengthening the coal pillar, or implementing destress blasting. The countermeasures we proposed and the results of our analyses may facilitate the safe mining of shallow coal seams with similar problems in the future, and may improve the safety and efficient working of coal mines.


2013 ◽  
Vol 644 ◽  
pp. 382-386 ◽  
Author(s):  
Ming Ming Wen

The FLAC software is used in establishing a relevant model to study the strata behavior of fully mechanized working face of steep coal seams. Using this model, we have simulated the roof caving characteristic and the stress distribution of surrounding rocks and analyzed the deformation feature of the surrounding rocks in the working face end. Based on the in-situ observation about the fully mechanized working face, we have obtained the surrounding rock stress and the strata behavior of steep coal seam and proposed some countermeasures aiming at these problems.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Gaochuan Guo ◽  
Yongkang Yang

The basis of traditional ground pressure and strata control techniques is the key strata theory, wherein the position of the key stratum can easily be determined for coal seams with regular thickness and without goaf. However, in the case of mining ultrathick coal seams underneath goaf, the traditional methods used for the calculation of key stratum position need to be improved in order to account for the additional coal seam thickness and the presence of an upper goaf. This study analyzed the failure height and collapse characteristics of overlying strata during excavation for determining the structure of the failed overlying strata. The results indicate that the intercalation and overlying strata gradually evolve into a large “arch structure” and a small “arch structure” during longwall mining, respectively. A mechanical model of the bearing characteristics of the interlayer key strata structure was established according to the structure of the intercalation rock layer, which is a hinged block structure. The results of the model indicate that the maximum principal stress occurs when the key strata portion of the arch structure bears the overlying load. Consequently, the movement and position of the interlayer key strata can be evaluated throughout the mining process of the ultrathick coal seams underneath goaf. This method was used to determine the position of interlayer key stratum of overlying strata in Xiegou coal mine. And the results agree with that of the engineering practice. The results are significant to determine the key strata position during ultrathick coal seam underneath goaf longwall mining.


2016 ◽  
Vol 64 (4) ◽  
pp. 1164-1175 ◽  
Author(s):  
Łukasz Wojtecki ◽  
Małgorzata Knopik ◽  
Wacław Marian Zuberek

2021 ◽  
Author(s):  
Luo Shenghu ◽  
tong wang ◽  
Wu Yongping ◽  
Huangfu Jingyu ◽  
Zhao Huatao

Abstract The key to the safe and efficient longwall mining of steeply dipping seams lies in the stability control of the "support-surrounding rock" system. This paper analyzes the difficulty of controlling the stability of the support during the longwall mining process of steeply dipping coal seams in terms of the characteristics of the non-uniform filled-in gob using a combination of physical test, theoretical analysis and field measurements. Considering the floor as an elastic foundation, we built a "support-surrounding rock" mechanical model based on data obtained on "support-surrounding rock" systems in different regions and the laws of support motion under different load conditions. Our findings are summarized as follows. First, depending on the angle of the coal seam, the caving gangue will roll (slide) downward along the incline, resulting in the formation of a non-uniform filling zone in the deep gob in which the lower, middle, and upper sections are filled, half-filled, and empty, respectively. In addition, an inverted triangular hollow surface is formed on the floor of the gob in the middle and upper sections behind the support. Furthermore, as the angle of the coal seam, length of the working face, and mining height increase, the characteristics of the non-uniform filled-in gob are enhanced. Second, we found that, as a result of support by the gangue, the "support-surrounding rock" system is relatively stable in the lower part of the working face while, in the middle and upper sections of the working face, the contact method and loading characteristics of the support are more complicated, making stability control difficult. Third, the magnitude and direction of the load, action point, and mining height all affect the stability of the support to varying degrees, with the tangential load and action position of the roof load having the most significant impacts on the stability of the support. Under loading by the roof, rotation and subsidence of the support inevitably occur, with gradually increasing amplitude and effects on the inter-support and sliding forces. Finally, we found that it is advisable in the process of moving the support to adopt "sliding advance of support" measures and to apply a "down-up" removal order to ensure overall stability. These research results provide reference and guidance of significance to field practice production.


2019 ◽  
Vol 15 (8) ◽  
pp. 155014771986985 ◽  
Author(s):  
Yang Li ◽  
Jiachen Wang ◽  
Yiding Chen ◽  
Zhipeng Wang ◽  
Jianpeng Wang

Longwall mining is a productive mining method that has been widely used in China, the United States, Australia, and Europe. However, due to the subsidence caused by coal mining activities, the phenomenon is complex, longwall mining brings the overburden movement issues accompany with the coal recovery. In subsidence trough, the resulting strata and surface ground movements are regarded as largely contemporaneous with mining, producing more or less direct effects of natural ecology. Ground penetrating radar has been widely used in geological hazard detection due to its high precision, but it is rarely employed in underground measuring the overlying strata movement above the longwall panel. In this article, there are five close-multiple coal seams (5#, 7#, 8#, 9#, 12# seams) within 70 m distance to be monitored in Qian Jiaying coal mine of Kailuan Coal Company in Hebei province. The 7#, 8#, 9#, 12# coal seams were already excavated in sequence. So the 5# coal seam is overmining above the gobs of four coal seams at the top. The ZTR12-series ground penetrating radar equipment is used to detect the development of fractures under the floor of the 5# coal seam. The ZTR12-series ground penetrating radar system has the capability of large depth detection and explosion proof to adapt to the working environment of underground coal mines and can realize fine detection and accurate identification. The maximum detection distance of reflection method can reach 50 m. The measurement results show that the 5# coal seam is in the fracture zone above the gobs of four coal seams, and the caved zone of lower coal seam develops to fine sandstone of the 5# coal seam floor. The ground penetrating radar has shown much promise in the detection of overlying strata movement.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhenhua Wu ◽  
Peng-Zhi Pan ◽  
Jianqiang Chen ◽  
Xudong Liu ◽  
Shuting Miao ◽  
...  

When studying the rock burst mechanism in subvertical extra-thick coal seams in the Wudong coal mine in Xinjiang, China, most studies focus on rock pillars, while the effect of the roof on rock bursts is usually ignored. In this paper, a rock burst mechanism in subvertical extra-thick coal seams under the control of a “roof-rock pillar” is proposed. A theoretical analysis is first performed to explain the effect of roof-rock pillar combinations on rock bursts in coal seams. Numerical modeling and microseismic analysis are implemented to further study the mechanism of rock burst. The main conclusions are as follows: 1) During the mining of the B3+6 coal seam, an obvious microseismic concentration phenomenon is found in both the roof and rock pillar of B3+6. The rock bursts exhibited obvious directionality, and its main failure characteristics are floor heave and sidewall heave, but there will also be some failures such as shoulder socket subsidence in some parts. 2) The stress transfer caused by rock pillar prying is the main reason for the large difference in rock burst occurrence near the vertical and extra thick adjacent coal seams under the same mining depth. 3) Under the same cantilever length, the elastic deformation energy of the roof is much greater than that of the rock pillar, which makes it easier to produce high-energy microseismic events. With an increasing mining depth, the roof will become the dominant factor controlling the occurrence of rock bursts. 4) The high-energy event produced by the rock mass fracture near the coal rock interface easily induces rock bursts, while the high-energy event produced by the fracture at the far end of the rock mass is less likely to induce rock burst. 5) Roof deformation extrusion and rock pillar prying provide high static stress conditions for the occurrence of rock bursts in the B3+6 coal seam. The superposition of the dynamic disturbance caused by roof and rock pillar failure and the high static stress of the coal seam is the main cause of rock burst in the B3+6 coal seam.


2021 ◽  
pp. 9-16
Author(s):  
S. Barsukov ◽  
А.Т. Batyrkhanova ◽  
Vladimir Dyomin

Purpose.  The published studies are aimed at determining the mechanism of deformation of the rocks of the contour around the workings in terms of the parameters of the emerging fracturing and their dependence on the indicators of the strength of the rocks and the depth of occurrence in the massif. The tasks of the study include the installation of fracture indicators, the determination of the parameters of the development of the deformation process around the working, including the effect of longwall mining and taking into account the possibility of reuse of the workings. Methodology. To solve the set tasks, the method of field observations was used together with the use of regression dependencies to determine the dependences of the parameters on the influencing factors. In addition, the method of full-scale pull-out tests of anchor support was used, which made it possible to determine the clamping forces of the anchors. Originality. In the course of the research, the dependences of stresses and deformation along the K7 coal seam in the conditions of the mine named after Kuzembaev CD JSC "ArcelorMittal Temirtau" for the massif around the mine with fastening. Rational parameters for the use of roof bolting in preparatory mine workings have been established. This type of fastening provides direct contact between rocks and lining. Analysis of the results of calculating the parameters of the roof bolting showed that to maintain the roof in the development workings, it is necessary to take into account the parameters of the roof bolting. The main parameters include the length of the anchors, the total resistance of the roof bolting and the density of the anchors. Anchor support forms laminated rock beams in the roof rocks, which ensure the stability of the workings. Conclusions and practical significance. The results of studies devoted to the establishment of the influence of mining-geological and mining-technical factors on the formation of zones of inelastic deformation in the host rocks were considered. Significant dependences of the deformation processes of rocks in the massif around the workings were obtained, and the parabolic zone of destruction of rocks was determined. The practical significance of the research consists in determining the actual indicators of the required bearing capacity of the anchorage at two levels in the conditions of the development of the coal seam k7 of the Kuzembaev mine.  


Author(s):  
V.N. Zakharov ◽  
V.A. Trofimov ◽  
A.V. Shlyapin

Formation of the stress-and-strain state of the rock mass in the roof of mined coal seam depends on the development of the mined-out space. It is believed that the coal seam is located deep enough and it can be assumed that the effect of the daylight surface on its condition can be neglected. In this case, the solution is based on the analytical approach using methods of the complex variable theory and it is reduced to the construction of a single permission analytical function. The paper reviews the evolution of the deformation processes in development of the mined-out space in presence of a hard-to-collapse elastic roof, which is capable of sinking smoothly over time, without sudden caving on the landings on the floor. A particular attention is paid to the phase when the roof and the floor touch each other, i.e. the roof caving, starting from the first touching and up to its complete caving. In this case, two sections of the hanging roof are formed, that are gradually reducing in length as the dimensions of the mined-out space increase. The area of roof caving is progressively increasing, and the vertical compressive stresses at the boundary are gradually rising, tending to reach the initial vertical pressure at the depth of the formation before the start of its mining. Tension zones relative to the horizontal and vertical stresses are identified, that are attributed to the areas of roof hang-up, which may determine the location of zones with higher methane and formation water permeability, both in the rocks between the seams and in the coal seam.


2020 ◽  
Vol 177 (12) ◽  
pp. 5723-5739
Author(s):  
Łukasz Wojtecki ◽  
Maciej J. Mendecki ◽  
Iwona Gołda ◽  
Wacław M. Zuberek

AbstractThe underground mining of coal seams in the Upper Silesian Coal Basin is carried out at great depths and mostly in the presence of remnants or edges of other surrounding coal seams, i.e. under the condition of high stress level in the rock mass. Therefore, this mining is accompanied by rockburst hazard and suitable preventive action is required. Long-hole destress blasting plays an important role and is commonly applied in rockburst prevention in underground hard coal mines. Estimated blasting effectiveness is important when designing rockburst prevention. It is commonly estimated on the basis of the seismic energy of a provoked tremor. The seismic source parameters have already been considered for this purpose. Additional information about the effects of long-hole destress blasting could be contemplated in the planning of active rockburst prevention. The seismic source parameters of tremors provoked by long-hole destress blasting have been calculated and are presented in this article. Destress blasts were performed during the longwall mining of coal seam no. 506 in one of the hard coal mines in the Upper Silesian Coal Basin. They were executed from the longwall face, in order to destress the rock mass ahead of it. Parameters of the blasts were variable and they were modified according to geological and mining conditions and the observed level of rockburst hazard. The seismic source parameters have been determined for tremors provoked directly after firing explosives and for tremors occurring in the waiting time, and they have been compared with each other.


Sign in / Sign up

Export Citation Format

Share Document