Riparian hunting spiders do not rely on aquatic subsidies from intermittent alpine streams

2021 ◽  
Vol 83 (2) ◽  
Author(s):  
Andre R. Siebers ◽  
Amael Paillex ◽  
Christopher T. Robinson
Keyword(s):  
2021 ◽  
Author(s):  
Marta Boix Canadell ◽  
Lluís Gómez‐Gener ◽  
Amber J. Ulseth ◽  
Mélanie Clémençon ◽  
Stuart N. Lane ◽  
...  

2005 ◽  
Vol 39 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Leopold Füreder ◽  
Manfred Wallinger ◽  
Rainer Burger

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2121
Author(s):  
Gabriele Consoli ◽  
Fabio Lepori ◽  
Christopher T. Robinson ◽  
Andreas Bruder

Exploitation of hydropower potential in alpine areas undermines the ecological integrity of rivers. Damming and water abstraction substantially alter the physical habitat template of rivers, with strong repercussions on aquatic communities and their resources. Tools are needed to predict and manage the consequences of these alterations on the structure and functioning of macroinvertebrate communities and resource availability in alpine streams. We developed habitat preference models for taxa, functional feeding guilds, and organic resources to quantify the effects of discharge alteration on macroinvertebrate communities in two alpine streams. Our physical habitat model related an indirect measure of bottom hydraulic forces (FST hemispheres) to the distribution of macroinvertebrate taxa and their resources. We observed that flow-dependent habitat availability for macroinvertebrate communities generally decreased with increasing water abstraction. We were able to relate these changes to near-bed hydraulic conditions. Our results suggest, however, the existence of upper discharge thresholds delimiting optimal habitat conditions for taxa. In contrast, we found weak effects of near-bed hydraulic conditions on resource distribution. Overall, our findings contribute towards predicting the impacts of water abstraction on macroinvertebrate communities in small alpine streams and the benefits of baseflow restoration.


2021 ◽  
Author(s):  
Lorenz Ammann ◽  
Tobias Nicollier ◽  
Alexandre Badoux ◽  
Dieter Rickenmann

<p>Knowledge about bedload transport in rivers is of high importance for many hydraulic engineering applications, in particular related to flood protection measures. Passive acoustic surrogate measurement techniques provide useful continuous estimates of bedload transport in terms of total mass, as well as for different grain-size classes.</p><p>We compare different surrogate measurement systems regarding their performance in quantifying total and fractional bedload transport in three alpine streams. The investigated measurement systems are the well-established Swiss plate geophone (SPG), an equivalent system in which the geophone sensor is replaced by an accelerometer sensor, and the miniplate accelerometer (MPA) system. The latter is a more recent device and consists of four small square metal plates embedded in elastomere elements. While the signal recorded with the SPG is known to be proportional to the transported bedload mass, we find that the MPA-signal shows a non-linear dependency. In addition, the MPA reacts more sensitively to small grain size classes than the other two systems, indicating a possible alternative to improve the quantification of bedload transport consisting of those classes.</p><p>Based on the raw signal recorded with the SPG and the MPA in a flume experiment, we test the ability of different empirical models to predict the known weight of the impacting particle. We show that it is possible to identify the particle weight with high accuracy with relatively simple models using data of either of the two measurement systems. One remaining challenge is to account for the site-to-site variability in the (amount of) signal caused by the combination of differing numbers of plates in the measurement setup and the lateral transmission of the signal across multiple plates, especially for the SPG system.</p>


2021 ◽  
Author(s):  
Benjamin John Gray Moulding

Abstract Freshwater biota are at risk globally from increasing salinity, including increases from deicing salts in cold regions. A variety of metrics of toxicity are used when estimating the toxicity of substances and comparing the toxicity between substances. However, the implications of using different metrics is not widely appreciated. Using the mayfly Colobruscoides giganteus (Ephemeroptera: Colobruscoidea) we compare the toxicity of seven different salts where toxicity was estimated using two metrics 1) the no effect concentrations (NEC) and 2) the lethal concentrations for 10, 25 and 50% of the test populations (LCx). The LCx values were estimated using two different models, the classic log-logistic model and the newer toxicokinetic-toxicodynamic (TKTD) model. We also compare the toxicity of two salts (NaCl and CaCl2) for C. giganteus at water temperatures of 4°C, 7°C and 15°C using the same metrics of toxicity. Our motivation for using a mayfly to assess salinity toxicity was because mayflies are generally salt sensitive, are ecologically important and are common in Australian (sub-)alpine streams. Considering 144-hour LCx values, we found toxicity differed between various salts, i.e., the lowest 144-hour LC50 (8 mS/cm) for a salt used by a ski resort was half that of the highest 144-hour LC50 from artificial marine salts and CaCl2 applied to roads (16mS/cm). 144-hour LC50 results at 7°C showed that analytical grade NaCl was significantly more toxic (7.3mS/cm) compared to analytical grade CaCl2 (12.5mS/cm). Yet for NEC values, there were comparably fewer differences in toxicity between salts and none between the same salts at different temperatures. We conclude that LCx values are better suited to compare difference in toxicity between substances or between the same substance at different test temperatures, while NEC values are better suited to estimating concentrations of substances that have no effect to the test species and endpoint measured under laboratory conditions.


2019 ◽  
Vol 55 (12) ◽  
pp. 10056-10081 ◽  
Author(s):  
C. Gabbud ◽  
M. Bakker ◽  
M. Clémençon ◽  
S. N. Lane
Keyword(s):  

2019 ◽  
Vol 14 (12) ◽  
pp. 124082
Author(s):  
Åsa Horgby ◽  
Lluís Gómez-Gener ◽  
Nicolas Escoffier ◽  
Tom J Battin

Author(s):  
A. M. Milner ◽  
J. E. Brittain ◽  
L. E. Brown ◽  
D. M. Hannah
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document