alpine streams
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 26)

H-INDEX

21
(FIVE YEARS 5)

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2121
Author(s):  
Gabriele Consoli ◽  
Fabio Lepori ◽  
Christopher T. Robinson ◽  
Andreas Bruder

Exploitation of hydropower potential in alpine areas undermines the ecological integrity of rivers. Damming and water abstraction substantially alter the physical habitat template of rivers, with strong repercussions on aquatic communities and their resources. Tools are needed to predict and manage the consequences of these alterations on the structure and functioning of macroinvertebrate communities and resource availability in alpine streams. We developed habitat preference models for taxa, functional feeding guilds, and organic resources to quantify the effects of discharge alteration on macroinvertebrate communities in two alpine streams. Our physical habitat model related an indirect measure of bottom hydraulic forces (FST hemispheres) to the distribution of macroinvertebrate taxa and their resources. We observed that flow-dependent habitat availability for macroinvertebrate communities generally decreased with increasing water abstraction. We were able to relate these changes to near-bed hydraulic conditions. Our results suggest, however, the existence of upper discharge thresholds delimiting optimal habitat conditions for taxa. In contrast, we found weak effects of near-bed hydraulic conditions on resource distribution. Overall, our findings contribute towards predicting the impacts of water abstraction on macroinvertebrate communities in small alpine streams and the benefits of baseflow restoration.


2021 ◽  
Author(s):  
Benjamin John Gray Moulding

Abstract Freshwater biota are at risk globally from increasing salinity, including increases from deicing salts in cold regions. A variety of metrics of toxicity are used when estimating the toxicity of substances and comparing the toxicity between substances. However, the implications of using different metrics is not widely appreciated. Using the mayfly Colobruscoides giganteus (Ephemeroptera: Colobruscoidea) we compare the toxicity of seven different salts where toxicity was estimated using two metrics 1) the no effect concentrations (NEC) and 2) the lethal concentrations for 10, 25 and 50% of the test populations (LCx). The LCx values were estimated using two different models, the classic log-logistic model and the newer toxicokinetic-toxicodynamic (TKTD) model. We also compare the toxicity of two salts (NaCl and CaCl2) for C. giganteus at water temperatures of 4°C, 7°C and 15°C using the same metrics of toxicity. Our motivation for using a mayfly to assess salinity toxicity was because mayflies are generally salt sensitive, are ecologically important and are common in Australian (sub-)alpine streams. Considering 144-hour LCx values, we found toxicity differed between various salts, i.e., the lowest 144-hour LC50 (8 mS/cm) for a salt used by a ski resort was half that of the highest 144-hour LC50 from artificial marine salts and CaCl2 applied to roads (16mS/cm). 144-hour LC50 results at 7°C showed that analytical grade NaCl was significantly more toxic (7.3mS/cm) compared to analytical grade CaCl2 (12.5mS/cm). Yet for NEC values, there were comparably fewer differences in toxicity between salts and none between the same salts at different temperatures. We conclude that LCx values are better suited to compare difference in toxicity between substances or between the same substance at different test temperatures, while NEC values are better suited to estimating concentrations of substances that have no effect to the test species and endpoint measured under laboratory conditions.


2021 ◽  
Author(s):  
Marta Boix Canadell ◽  
Lluís Gómez‐Gener ◽  
Amber J. Ulseth ◽  
Mélanie Clémençon ◽  
Stuart N. Lane ◽  
...  

2021 ◽  
Author(s):  
Lorenz Ammann ◽  
Tobias Nicollier ◽  
Alexandre Badoux ◽  
Dieter Rickenmann

<p>Knowledge about bedload transport in rivers is of high importance for many hydraulic engineering applications, in particular related to flood protection measures. Passive acoustic surrogate measurement techniques provide useful continuous estimates of bedload transport in terms of total mass, as well as for different grain-size classes.</p><p>We compare different surrogate measurement systems regarding their performance in quantifying total and fractional bedload transport in three alpine streams. The investigated measurement systems are the well-established Swiss plate geophone (SPG), an equivalent system in which the geophone sensor is replaced by an accelerometer sensor, and the miniplate accelerometer (MPA) system. The latter is a more recent device and consists of four small square metal plates embedded in elastomere elements. While the signal recorded with the SPG is known to be proportional to the transported bedload mass, we find that the MPA-signal shows a non-linear dependency. In addition, the MPA reacts more sensitively to small grain size classes than the other two systems, indicating a possible alternative to improve the quantification of bedload transport consisting of those classes.</p><p>Based on the raw signal recorded with the SPG and the MPA in a flume experiment, we test the ability of different empirical models to predict the known weight of the impacting particle. We show that it is possible to identify the particle weight with high accuracy with relatively simple models using data of either of the two measurement systems. One remaining challenge is to account for the site-to-site variability in the (amount of) signal caused by the combination of differing numbers of plates in the measurement setup and the lateral transmission of the signal across multiple plates, especially for the SPG system.</p>


2021 ◽  
Author(s):  
Luca Bonacina ◽  
Riccardo Fornaroli ◽  
Valeria Mezzanotte ◽  
Francesca Marazzi

<p>Phytobenthos is the dominant primary producer in streams and sustains, with the allochthonous organic matter inputs, the higher trophic levels. Among the different groups that constitute the phytobenthos community some, especially diatoms, have been studied deeply while others remain quite overlooked. Hence, a characterisation of the overall phytobenthos community is needed, considering all the main taxonomic groups (diatoms, green algae, cyanobacteria and red algae), as related to the environmental conditions characterizing different alpine streams. Moreover, despite the ecological role played by the phytobenthos the knowledge about the factors that control the variations of the community among streams and throughout the different seasons is still poor. Among the different drivers that regulate the phytobenthos component, a pivotal factor is the occurrence of high-flow events that, controlling the stability of riverbed substrates, influences both the phyto and the zoobenthos composition and distribution. Thus, the frequency and the magnitude of flow disturbances are determinant in regulating the phytobenthos density and the recolonization patterns. The aim of this work was to characterize and compare the phytobenthos communities in different streams highlighting the role of the flow regulation due to hydropower reservoirs accounting for the influence of the lithology and the seasonality. The presented phytobenthos data derive from a one-year sampling campaign in four alpine streams representative of different flow conditions (natural vs regulated flow discharge) and lithology (silicate vs carbonate). The riverbed coverage has been estimated monthly in each stream and the biomass has been quantified. In lab, phytobenthos samples have been analysed to measure the photosynthetic activity and define their composition. The main groups (cyanobacteria, green algae, diatoms and algae with phycoerythrin) have been determined both by phyto-PAM deconvolution and by the quantification of the photosynthetic pigments. In order to estimate the bed disturbance, painted stones of different size classes were located in regular arrays along three transversal transects and the distance travelled was measured during every sampling. The preliminary results indicate that regulated streams seem characterized by a greater algae biomass possibly due to a more stable environment. Concerning the community composition, the percentage of diatoms is significatively higher in silicate substrates. Despite the few hours of light, winter promotes phytobenthos colonisation especially for the low frequency of relevant high-flow events but also for the absence of the shadow due to tree canopy on the riverbed.</p>


2021 ◽  
Vol 83 (2) ◽  
Author(s):  
Andre R. Siebers ◽  
Amael Paillex ◽  
Christopher T. Robinson
Keyword(s):  

2020 ◽  
Vol 117 ◽  
pp. 106660
Author(s):  
Valeria Lencioni ◽  
Francesco Bellamoli ◽  
Francesca Paoli

Hydrobiologia ◽  
2020 ◽  
Vol 847 (19) ◽  
pp. 4049-4061 ◽  
Author(s):  
Elena Piano ◽  
Alberto Doretto ◽  
Elisa Falasco ◽  
Laura Gruppuso ◽  
Francesca Bona ◽  
...  

Abstract Several Alpine streams are currently facing recurrent summer drying events with detrimental consequences on stream detritivores, i.e., shredders, due to negative effects via changes the organic matter (CPOM) availability. We examined the ecological requirements of three phylogenetically related shredder genera belonging to the family of Nemouridae (Plecoptera), namely Nemoura, Protonemura and Amphinemura, in 14 Alpine streams recently facing recurrent summer flow intermittency events. We evaluated the overlap among their ecological niches measured in terms of hydraulic stress, substrate composition, changes in CPOM availability and competition with other shredder taxa (i.e., presence of individuals of other shredders) and we examined potential changes in their ecological niches between permanent and intermittent sites. The ecological niches of Protonemura and Amphinemura overlap broadly, but not with Nemoura, suggesting only partial potential competition. The reduced CPOM availability decreased the individual abundance of the three genera in intermittent sites, where they consistently preferred microhabitats with high CPOM availability and low competition with other shredder taxa, possibly due to food limitation. Overall, our results emphasize how the negative effect of flow intermittency on shredders in Alpine streams is mainly due to the decrease in CPOM availability, with consequent potential bottom up effects on stream ecosystem functionality.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4089 ◽  
Author(s):  
Gilles Antoniazza ◽  
Tobias Nicollier ◽  
Carlos R. Wyss ◽  
Stefan Boss ◽  
Dieter Rickenmann

Acoustic sensors are increasingly used to measure bedload transport in Alpine streams, notably the Swiss plate geophone (SPG) system. An impact experiment using artificial weights is developed in this paper to assess the variability in individual plate response and to evaluate the extent to which calibration coefficients can be transferred from calibrated plates to non-calibrated plates at a given measuring site and/or to other measuring sites. Results of the experiment over 43 plates at four measuring sites have notably shown (a) that the maximum amplitude (V) recorded by individual plates tends to evolve as a power law function of the impact energy (J), with an exponent slightly larger than 1, for all the plates at all measuring sites; (b) that there is a substantial propagation of energy across plates that should be taken into account for a better understanding of the signal response; (c) that the response of individual plates is in most cases consistent, which suggests that calibration coefficients are comparable within and in between measuring sites, but site-specific and plate-specific variabilities in signal response have to be considered for a detailed comparison.


Sign in / Sign up

Export Citation Format

Share Document