habitat template
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 83 (4) ◽  
Author(s):  
Victoria S. Milner ◽  
Ian P. Maddock ◽  
Iwan Jones ◽  
George C. Bunting

AbstractThe deposition of excess fine sediment and clogging of benthic substrates is recognised as a global threat to ecosystem functioning and community dynamics. Legacy effects of previous sedimentation create a habitat template on which subsequent ecological responses occur, and therefore, may have a long-lasting influence on community structure. Our experimental study examined the effects of streambed colmation (representing a legacy effect of fine sediment deposition) and a suspended fine sediment pulse on macroinvertebrate drift and community dynamics. We used 12 outdoor stream mesocosms that were split into two sections of 6.2 m in length (24 mesocosm sections in total). Each mesocosm section contained a coarse bed substrate with clear bed interstices or a fine bed substrate representing a colmated streambed. After 69 days, a fine sediment pulse with three differing fine sediment treatments was applied to the stream mesocosms. Added fine sediment influenced macroinvertebrate movements by lowering benthic density and taxonomic richness and increasing drift density, taxonomic richness, and altering drift assemblages. Our study found the highest dose of sediment addition (an estimated suspended sediment concentration of 1112 mg l−1) caused significant differences in benthic and drift community metrics and drift assemblages compared with the control treatment (30 l of water, no added sediment). Our results indicate a rapid response in drifting macroinvertebrates after stressor application, where ecological impairment varies with the concentration of suspended sediment. Contrary to expectations, bed substrate characteristics had no effect on macroinvertebrate behavioural responses to the fine sediment pulse.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2121
Author(s):  
Gabriele Consoli ◽  
Fabio Lepori ◽  
Christopher T. Robinson ◽  
Andreas Bruder

Exploitation of hydropower potential in alpine areas undermines the ecological integrity of rivers. Damming and water abstraction substantially alter the physical habitat template of rivers, with strong repercussions on aquatic communities and their resources. Tools are needed to predict and manage the consequences of these alterations on the structure and functioning of macroinvertebrate communities and resource availability in alpine streams. We developed habitat preference models for taxa, functional feeding guilds, and organic resources to quantify the effects of discharge alteration on macroinvertebrate communities in two alpine streams. Our physical habitat model related an indirect measure of bottom hydraulic forces (FST hemispheres) to the distribution of macroinvertebrate taxa and their resources. We observed that flow-dependent habitat availability for macroinvertebrate communities generally decreased with increasing water abstraction. We were able to relate these changes to near-bed hydraulic conditions. Our results suggest, however, the existence of upper discharge thresholds delimiting optimal habitat conditions for taxa. In contrast, we found weak effects of near-bed hydraulic conditions on resource distribution. Overall, our findings contribute towards predicting the impacts of water abstraction on macroinvertebrate communities in small alpine streams and the benefits of baseflow restoration.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tyler J. Kohler ◽  
Hannes Peter ◽  
Stilianos Fodelianakis ◽  
Paraskevi Pramateftaki ◽  
Michail Styllas ◽  
...  

Glacier-fed streams (GFSs) exhibit near-freezing temperatures, variable flows, and often high turbidities. Currently, the rapid shrinkage of mountain glaciers is altering the delivery of meltwater, solutes, and particulate matter to GFSs, with unknown consequences for their ecology. Benthic biofilms dominate microbial life in GFSs, and play a major role in their biogeochemical cycling. Mineralization is likely an important process for microbes to meet elemental budgets in these systems due to commonly oligotrophic conditions, and extracellular enzymes retained within the biofilm enable the degradation of organic matter and acquisition of carbon (C), nitrogen (N), and phosphorus (P). The measurement and comparison of these extracellular enzyme activities (EEA) can in turn provide insight into microbial elemental acquisition effort relative to environmental availability. To better understand how benthic biofilm communities meet resource demands, and how this might shift as glaciers vanish under climate change, we investigated biofilm EEA in 20 GFSs varying in glacier influence from New Zealand’s Southern Alps. Using turbidity and distance to the glacier snout normalized for glacier size as proxies for glacier influence, we found that bacterial abundance (BA), chlorophyll a (Chl a), extracellular polymeric substances (EPS), and total EEA per gram of sediment increased with decreasing glacier influence. Yet, when normalized by BA, EPS decreased with decreasing glacier influence, Chl a still increased, and there was no relationship with total EEA. Based on EEA ratios, we found that the majority of GFS microbial communities were N-limited, with a few streams of different underlying bedrock geology exhibiting P-limitation. Cell-specific C-acquiring EEA was positively related to the ratio of Chl a to BA, presumably reflecting the utilization of algal exudates. Meanwhile, cell-specific N-acquiring EEA were positively correlated with the concentration of dissolved inorganic nitrogen (DIN), and both N- and P-acquiring EEA increased with greater cell-specific EPS. Overall, our results reveal greater glacier influence to be negatively related to GFS biofilm biomass parameters, and generally associated with greater microbial N demand. These results help to illuminate the ecology of GFS biofilms, along with their biogeochemical response to a shifting habitat template with ongoing climate change.


2018 ◽  
Vol 24 (4) ◽  
pp. 466-476
Author(s):  
Natalia Cáceres ◽  
Lelia Imhof ◽  
Mario Suárez ◽  
Emmanuel Hick ◽  
Leonardo Galetto

Extensive green roofs (EGR) spaces constitute harsh and stressful growing environments, and consequently a limited range of plants species that can be routinely used there. The habitat template hypothesis suggests that EGR can be analogous as natural environments, what makes native plants as an alternative for these conditions. This paper aimed to assess the potential use of 15 native plants from Córdoba Province (Argentina) for green roofs, based on cover ability, survived rates and health status observations during a period of 414 days. Sedum acre L. was used as the control. Glandularia x hybrid, Phyla nodiflora (L.) Greene, Melica macra Nees, Eustachys retusa (Lag.) Kunth and Grindelia cabrerae Ariza kept up a 60% of coverage during all the period of study. The first two species had an outperformed green coverage (at 72th day; 95% and 98% respectively) in relation to the control species (Sedum acre; 87%). Eustachys retusa and Grindelia cabrerae grew progressively and kept their coverage constant proximally to 65%. Sedum acre, Grindelia cabrerae, Hysterionica jasionoides Willd, Melica macra, Phyla nodiflora, stood out in plant survival rates; but S. acre suffered changes in health status throughout the evaluation period, especially with low temperatures or at high humidity conditions. It is necessary to underline the reseeding potential of Eustachys retusa, a process that could guarantee perpetuation of the species on EGR.


2018 ◽  
Vol 10 (11) ◽  
pp. 4209 ◽  
Author(s):  
Ibrahim Salman ◽  
Leon Blaustein

Worldwide, urban areas are expanding both in size and number, which results in a decline in habitats suitable for urban flora and fauna. The construction of urban green features, such as green roofs, may provide suitable habitat patches for many species in urban areas. On green roofs, two approaches have been used to select plants—i.e., matching similar habitat to green roofs (habitat template approach) or identifying plants with suitable traits (plant trait approach). While both approaches may result in suitable habitats for arthropods, how arthropods respond to different combinations of plants is an open question. The aim of this study was to investigate how the structural complexity of different plant forms can affect the abundance and richness of arthropods on green roofs. The experimental design crossed the presence and absence of annuals with three Sedum sediforme (Jacq.) Pau (common name: stonecrops) treatments—i.e., uniformly disrupted Sedum, clumped disrupted Sedum, and no Sedum. We hypothesized that an increased structural diversity due to the coexistence of different life forms of plants on roofs is positively related to the abundance and richness of arthropods. We found that arthropod abundance and richness were positively associated with the percent of vegetation cover and negatively associated with substrate temperature. Neither arthropod abundance nor richness was influenced by the relative moisture of substrate. We also found that arthropod abundance and richness varied by green roof setups (treatments) and by seasonality. Arthropod abundance on green roofs was the highest in treatments with annuals only, while species richness was slightly similar between treatments containing annuals but varied between sampling periods. This study suggests that adding annuals to traditional Sedum roofs has positive effects on arthropods. This finding can support the development of biodiverse cities because most extensive green roofs are inaccessible to the public and can provide undisturbed habitat for several plant and arthropod species.


2015 ◽  
Vol 13 (1) ◽  
pp. 165-178 ◽  
Author(s):  
Camilo Andrés Roa-Fuentes ◽  
Lilian Casatti ◽  
Renato de Mei Romero

We tested the contribution of the phylogenetic and specific components to the ecomorphological structure of stream fish from the upper Paraguai River and upper São Francisco River basins, and identified nodes in the phylogenetic tree at which major ecological shifts occurred. Fish were sampled between June and October of 2008 in 12 streams (six in each basin). In total, 22 species from the upper Paraguai River basin and 12 from the upper São Francisco River were analyzed. The ecomorphological patterns exhibited phylogenetic signal, indicating that the ecomorphological similarity among species is associated with the degree of relatedness. A strong habitat template is most likely to be the primary cause for a high phylogenetic signal. A significant contribution from the specific component was also detected, supporting the idea that the phylogenetic signal occurs in some clades for some traits, but not in others. The major ecological shifts were observed in the basal nodes, suggesting that ecological niche differences appear to accumulate early in the evolutionary history of major clades. This finding reinforces the role of key traits in the diversification of Neotropical fishes. Ecological shifts in recent groups could be related to morphological modifications associated with habitat use.


2014 ◽  
Vol 71 (11) ◽  
pp. 1616-1624 ◽  
Author(s):  
Nicholas E. Jones ◽  
Bastian J. Schmidt ◽  
Stephanie J. Melles

Extremes of flow and patterns of flow variability limit the distribution and abundance of riverine species via a natural disturbance regime. Using a habitat template approach, we describe the distribution and characteristics of natural flow regimes in Canada based on the severity of flows, flow predictability, and flow variability. Bayesian clustering was used to group 888 gauged watersheds across Canada into 10 classes. Some flow classes were found in all provinces, whereas others showed greater regional grouping related to land physiography (e.g., Canadian Shield and ecozones). Ontario and British Columbia had the greatest diversity of flow classes. Larger river systems tended towards less harsh flow regimes and greater flow regularity than small systems. A stream–lake network pattern, particularly the presence of lakes, decreased the severity of flow. The flow metric flood-free interval was found to be a potentially misleading indicator of reduced disturbance for high-latitude streams in Canada where ice formation and persistence are important stress factors for biota. Most flow stations had an 80% or higher chance of belonging to their primary membership class. Quantifying uncertainty in class assignment can help fellow scientists and resource managers appropriately apply our findings.


Sign in / Sign up

Export Citation Format

Share Document