Design of Linear Low-Power Voltage-Controlled Oscillator with I-MOS Varactor and Back-Gate Tuning

2018 ◽  
Vol 37 (9) ◽  
pp. 3685-3701 ◽  
Author(s):  
Manoj Kumar
2018 ◽  
Vol 27 (10) ◽  
pp. 1850160 ◽  
Author(s):  
Manoj Kumar ◽  
Dileep Dwivedi

This paper presents a new design of low power voltage controlled oscillator (VCO) circuit using three transistors NOR-gate and I-MOS (inversion mode) varactor tuning method. Variation in the oscillation frequency has been obtained by varying the output load capacitance with the use of I-MOS varactor tuning consisting of two PMOS transistors connected in parallel. Variable capacitance across the I-MOS varactor has been achieved by varying the source/drain voltage ([Formula: see text] and back-gate voltage ([Formula: see text]. Variation of [Formula: see text] from 1[Formula: see text]V to 2[Formula: see text]V provides the frequency deviation from 1.970[Formula: see text]GHz to 1.379[Formula: see text]GHz with I-MOS width of 8 [Formula: see text]m at power supply voltage ([Formula: see text] of 1.8[Formula: see text]V. Power consumption of the circuit is 1.296[Formula: see text]mW with [Formula: see text] of 1.8[Formula: see text]V. The results have been obtained for different I-MOS varactor widths like 5[Formula: see text][Formula: see text]m, 8[Formula: see text][Formula: see text]m and 10[Formula: see text][Formula: see text]m. Further, variations in the frequency have been obtained from 0.650 GHz to 2.584 GHz with the Vdd variation from 1[Formula: see text]V to 3[Formula: see text]V. In addition, by variations of [Formula: see text] from 0[Formula: see text]V to 1.8[Formula: see text]V and [Formula: see text] from 1[Formula: see text]V to 3[Formula: see text]V, the proposed oscillators operate in the frequency range from 0.556[Formula: see text]GHz to 2.584[Formula: see text]GHz for 8[Formula: see text][Formula: see text]m width of I-MOS varactor. Proposed VCO circuit show a phase noise of [Formula: see text][Formula: see text]dBc/Hz at 1[Formula: see text]MHz offset from the carrier frequency and the figure of merit (FoM) for the VCO is 154.51[Formula: see text]dB/Hz. Proposed VCO shows an improved performance in terms of power consumption, output frequency and FoM.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 889
Author(s):  
Xiaoying Deng ◽  
Peiqi Tan

An ultra-low-power K-band LC-VCO (voltage-controlled oscillator) with a wide tuning range is proposed in this paper. Based on the current-reuse topology, a dynamic back-gate-biasing technique is utilized to reduce power consumption and increase tuning range. With this technique, small dimension cross-coupled pairs are allowed, reducing parasitic capacitors and power consumption. Implemented in SMIC 55 nm 1P7M CMOS process, the proposed VCO achieves a frequency tuning range of 19.1% from 22.2 GHz to 26.9 GHz, consuming only 1.9 mW–2.1 mW from 1.2 V supply and occupying a core area of 0.043 mm2. The phase noise ranges from −107.1 dBC/HZ to −101.9 dBc/Hz at 1 MHz offset over the whole tuning range, while the total harmonic distortion (THD) and output power achieve −40.6 dB and −2.9 dBm, respectively.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750184 ◽  
Author(s):  
Qiuzhen Wan ◽  
Jun Dong ◽  
Hui Zhou ◽  
Fei Yu

In this paper, a very low power modified current-reused quadrature voltage-controlled oscillator (QVCO) is proposed with the back-gate coupling technique for the quadrature signal generation. By stacking switching transistors in series like a cascode, the modified current-reused QVCO can be constructed in a totem-pole manner to reuse the dc biasing current and lower the power consumption. By utilizing the back-gates of switching transistors as coupling terminals to achieve the quadrature outputs, the back-gate coupled QVCO improves the phase noise and reduces the power consumption compared to the conventional coupling transistor based topology. Together with the modified current-reuse and back-gate coupling techniques, the proposed QVCO can operate at reduced supply voltage and power consumption while maintaining remarkable circuit performance in terms of low phase noise and wide tuning range. With a dc power of 1.6[Formula: see text]mW under a 0.8[Formula: see text]V supply voltage, the simulation results show the tuning range of the QVCO is from 2.36 to 3.04[Formula: see text]GHz as the tuning voltage is varied from 0.8 to 0.0[Formula: see text]V. The phase noise is [Formula: see text]118.3[Formula: see text]dBc/Hz at 1[Formula: see text]MHz offset frequency from the carrier frequency of 2.36[Formula: see text]GHz and the corresponding figure-of-merit of the QVCO is [Formula: see text]183.7[Formula: see text]dBc/Hz.


Author(s):  
Wieslaw Kuzmicz

Negative feedback to the back gate of MOS devices available in FD-SOI technologies can be used to improve linearity of operational amplifiers. Two operational amplifiers designed and fabricated in a 22nm FD-SOI technology illustrate this technique, its advantages and limitations.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6456
Author(s):  
Fernando Cardes ◽  
Nikhita Baladari ◽  
Jihyun Lee ◽  
Andreas Hierlemann

This article reports on a compact and low-power CMOS readout circuit for bioelectrical signals based on a second-order delta-sigma modulator. The converter uses a voltage-controlled, oscillator-based quantizer, achieving second-order noise shaping with a single opamp-less integrator and minimal analog circuitry. A prototype has been implemented using 0.18 μm CMOS technology and includes two different variants of the same modulator topology. The main modulator has been optimized for low-noise, neural-action-potential detection in the 300 Hz–6 kHz band, with an input-referred noise of 5.0 μVrms, and occupies an area of 0.0045 mm2. An alternative configuration features a larger input stage to reduce low-frequency noise, achieving 8.7 μVrms in the 1 Hz–10 kHz band, and occupies an area of 0.006 mm2. The modulator is powered at 1.8 V with an estimated power consumption of 3.5 μW.


Sign in / Sign up

Export Citation Format

Share Document