scholarly journals Effect of diet on incipient colony success for two long-tongued bumblebee species in the laboratory

2020 ◽  
Vol 67 (4) ◽  
pp. 531-539
Author(s):  
J. D. Carnell ◽  
R. A. Hulse ◽  
S. Page ◽  
D. Goulson ◽  
W. O. H. Hughes

AbstractBumblebees (Bombus spp.) are ecologically and economically important pollinating insects and nutritional stress is one of the most significant factors causing their decline. However, our knowledge of the nutritional requirements of bumblebees is largely limited to just a small number of species that can be easily reared in the laboratory, so there is an important need to understand the nutritional requirements of a greater range of bumblebee species. In particular, the long-tongued, pocket maker species that have been intractable to laboratory rearing, yet are often of greatest conservation concern. Here, we compare the development and success of incipient colonies in two species of pocket maker bumblebees (B. pascuorum and B. hortorum) when fed either a less diverse or more diverse pollen diet. Our results show that both diets were sufficiently good for queens of both species to rear workers, but they performed significantly better for some variables on the less diverse diet. Our findings support previous work that suggests that a less diverse diet can be as good as a highly diverse mix in some respects. We also observed significant differences between species, demonstrating why we must not rely only on one or two model species to understand the effects of nutritional stress on bumblebee communities.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Helen B. Anderson ◽  
Annie Robinson ◽  
Advaith Siddharthan ◽  
Nirwan Sharma ◽  
Helen Bostock ◽  
...  

AbstractWidespread concern over declines in pollinating insects has led to numerous recommendations of which “pollinator-friendly” plants to grow and help turn urban environments into valuable habitat for such important wildlife. Whilst communicated widely by organisations and readily taken up by gardeners, the provenance, accuracy, specificity and timeliness of such recommendations remain unclear. Here we use data (6429 records) gathered through a UK-wide citizen science programme (BeeWatch) to determine food plant use by the nations’ bumblebee species, and show that much of the plant use recorded does not reflect practitioner recommendations: correlation between the practitioners’ bumblebee-friendly plant list (376 plants compiled from 14 different sources) and BeeWatch records (334 plants) was low (r = 0.57), and only marginally higher than the correlation between BeeWatch records and the practitioners’ pollinator-friendly plant list (465 plants from 9 different sources; r = 0.52). We found pollinator-friendly plant lists to lack independence (correlation between practitioners’ bumblebee-friendly and pollinator-friendly lists: r = 0.75), appropriateness and precision, thus failing to recognise the non-binary nature of food-plant preference (bumblebees used many plants, but only in small quantities, e.g. lavender—the most popular plant in the BeeWatch database—constituted, at most, only 11% of records for any one bumblebee species) and stark differences therein among species and pollinator groups. We call for the provision and use of up-to-date dynamic planting recommendations driven by live (citizen science) data, with the possibility to specify pollinator species or group, to powerfully support transformative personal learning journeys and pollinator-friendly management of garden spaces.


2020 ◽  
Author(s):  
Briana Burt ◽  
Kristina Chomiak ◽  
Ibrahim Cisse ◽  
Aaron Paratore ◽  
Kaitlin Stack Whitney

AbstractThere is growing concern, locally and globally, about the health of pollinating insects and their decreasing abundance and diversity. While roads may also be contributing to insect pollinator declines (roads can contribute to habitat fragmentation and habitat destruction), roadsides may provide opportunities for pollinating insect conservation. Yet to use these areas to support local pollinating insects, we need to understand which plants will support wild pollinators, especially of conservation concern. To that end, we researched the potential plant-pollinator networks of three existing seed mixes in western New York (USA) – a roadside seed mix, a pollinator-friendly planting mix, and a lawn seed mix. We used publicly available information and built bipartite graphs to show the resulting networks. The pollinator-friendly seed mix supported the most pollinating insects overall and taxa of conservation concern. Yet the roadside mix, with the same species richness as the lawn seed mix, supported a different network based on the plants in the mix. Our results inform which particular plant species in existing seed mixes in western New York can support wild pollinating insect species of concern in the region. Additionally, our results show potentially how roadside and lawn plantings may be altered to support a broader network of pollinating insects.


2019 ◽  
Vol 69 (3) ◽  
pp. 307-326 ◽  
Author(s):  
Valentina Rovelli ◽  
Aritz Ruiz-González ◽  
Leonardo Vignoli ◽  
Daniele Macale ◽  
Vincenzo Buono ◽  
...  

Abstract Next Generation Sequencing (NGS) and related technologies have revolutionized the field of conservation and population genetics, providing novel tools and the capacity to discover thousands of new Single Nucleotide Polymorphisms (SNPs) for the analysis of population parameters. However, gathering NGS data for organisms with very large genomes, such as amphibians, remains challenging because it is still unclear how the current methods perform. Here, we use the Genotyping-by-Sequencing (GBS) approach to generate SNP data for the genotyping of two amphibian species that are of conservation concern, the Sardinian brook salamander (Euproctus platycephalus) and the Italian stream frog (Rana italica). Both E. platycephalus and R. italica have very large genomes (5.53 Gb and >20 Gb, respectively) so genomic data are not available for either of them. We used 95 individual samples and one Illumina lane for each species, with an additional lane for E. platycephalus. After filtering, we obtained 961 and 854 high-coverage SNPs for E. platycephalus and R. italica, respectively. Our results suggest that GBS can serve as a reliable and cost-effective method for genotyping large amphibian genomes, including non-model species.


2001 ◽  
Vol 133 (4) ◽  
pp. 439-465 ◽  
Author(s):  
B.M.H. Larson ◽  
P.G. Kevan ◽  
D.W. Inouye

AbstractThe Diptera are the second most important order among flower-visiting (anthophilous) and flower-pollinating insects worldwide. Their taxonomic diversity ranges from Nematocera to Brachycera, including most families within the suborders. Especially important are Syrphidae, Bombyliidae, and Muscoidea. Other families, especially of small flies, are less appreciated and often overlooked for their associations with flowers. We have compiled records of their flower visitations to show that they may be more prevalent than usually thought. Our knowledge of anthophilous Diptera needs to be enhanced by future research concerning (i) the significance of nocturnal Nematocera and acalypterate muscoids as pollinators, (ii) the extent to which the relatively ineffective pollen-carrying ability of some taxa can be compensated by the abundance of individuals, and (iii) the role of Diptera as pollinators of the first flowering plants (Angiospermae) by using phylogenetic and palaeontological evidence. Specializations in floral relationships involve the morphology of Diptera, especially of their mouthparts, nutritional requirements, and behaviour, as well as concomitant floral attributes. The South African flora has the most highly specialized relations with dipterous pollinators, but in arctic and alpine generalist fly–flower relations are important in pollination and fly nutrition.


2021 ◽  
Author(s):  
J. Howe ◽  
M. Schiøtt ◽  
J. J. Boomsma

AbstractQueens of the inquiline social parasite Acromyrmex insinuator are known to infiltrate mature colonies of Acromyrmex echinatior and to exploit the host’s perennial workforce by producing predominantly reproductive individuals while suppressing host reproduction. Here we report three cases of an A. insinuator queen having joined an incipient colony of A. echinatior that contained only the founding host-queen and her small symbiotic fungus garden. We conjectured that 1:1 host-inquiline co-founding—a phenomenon that has only rarely been reported in ants—may imply that the presence of an A. insinuator queen may incur benefits to the host by increasing survival of its incipient colonies. We observed that the parasite queens neither foraged nor defended the nest against intruders. However, the parasite queens interacted with the host and fungus in a way that could be consistent with grooming and/or with contributing eggs. These observations may help explain why A. insinuator queens have maintained metapleural glands, even though they are smaller than those of host queens, and why A. insinuator has lost the large foraging worker caste but not the small worker caste.


Apidologie ◽  
2019 ◽  
Vol 51 (2) ◽  
pp. 254-266 ◽  
Author(s):  
Joanne D. Carnell ◽  
Sam Page ◽  
Dave Goulson ◽  
William O. H. Hughes

AbstractBumblebees are important pollinating insects, but many species have suffered declines over the last century. Long-tongued bumblebees have been identified as particularly at risk, partly due to their more selective diet. Attempts to study these species in captivity have been impeded by stress-induced behaviours which cause queens to kill or abandon their brood. Here, we attempt to further develop techniques, using queen pairing and Bombus terrestris cocoons, to successfully rear two common long-tongued bumblebee species (B. pascuorum and B. hortorum) in captivity. Approximately half of queens laid eggs and 29% produced workers. Although challenges remain, there is a great deal to be gained from optimising the captive rearing of these species.


2014 ◽  
Vol 60 (1) ◽  
pp. 90-103 ◽  
Author(s):  
J.C. O’Hanlon ◽  
G. I. Holwell ◽  
M.E. Herberstein

Abstract Cases of imperfect or non-model mimicry are common in plants and animals and challenge intuitive assumptions about the nature of directional selection on mimics. Many non-rewarding flower species do not mimic a particular species, but attract pollinators through ‘generalised food deception’. Some predatory animals also attract pollinators by resembling flowers, perhaps the most well known, yet least well understood, is the orchid mantis Hymenopus coronatus. This praying mantis has been hypothesised to mimic a flower corolla and we have previously shown that it attracts and captures pollinating insects as prey. Predatory pollinator deception is relatively unstudied and whether this occurs through model mimicry or generalised food deception in the orchid mantis is unknown. To test whether the orchid mantis mimics a specific model flower species we investigated similarities between its morphology and that of flowers in its natural habitat in peninsular Malaysia. Geometric morphometries were used to compare the shape of mantis femoral lobes to flower petals. Physiological vision models were used to compare the colour of mantises and flowers from the perspective of bees, flies and birds. We did not find strong evidence for a specific model flower species for the orchid mantis. The mantis’ colour and shape varied within the range of that exhibited by many flower petals rather than resembling one type in particular. We suggest that the orchid mantis resembles an average, or generalised flower-like stimulus. Thus predatory pollinator deception in the orchid mantis is likely to function as a form of generalised food deception, as opposed to model mimicry.


2019 ◽  
Vol 112 (5) ◽  
pp. 2311-2315 ◽  
Author(s):  
Sang-Bin Lee ◽  
Aaron Mullins ◽  
Daniel Aguilera-Olivares ◽  
Thomas Chouvenc ◽  
Nan-Yao Su

Abstract Laboratory studies of Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae) often employ the use of field-collected foraging populations of individuals as defined colonies. The biological relevance of this practice is often called into question, because these colonies lack a full composition of reproductive castes and brood, which may have physiological and behavioral consequences. Rearing intact laboratory colonies can be done; however, it is time-consuming and labor-intensive. The artificial fusion of field-collected foraging populations with a young, laboratory-reared incipient colony may provide whole, intact colonies for laboratory research. The current study measures survivorship of fused colonies using laboratory-reared complete incipient colonies ranging in age from 0 to 5 mo, fused with 100 workers and 10 soldiers from field-collected populations of different colonial origin. Results indicate that 60% of colony fusion was successful when the incipient colony introduced is 5 mo of age. This method of colony fusion will provide researchers with intact colonies using minimal resources.


Author(s):  
Melen McBride

Ethnogeriatrics is an evolving specialty in geriatric care that focuses on the health and aging issues in the context of culture for older adults from diverse ethnic backgrounds. This article is an introduction to ethnogeriatrics for healthcare professionals including speech-language pathologists (SLPs). This article focuses on significant factors that contributed to the development of ethnogeriatrics, definitions of some key concepts in ethnogeriatrics, introduces cohort analysis as a teaching and clinical tool, and presents applications for speech-language pathology with recommendations for use of cohort analysis in practice, teaching, and research activities.


2020 ◽  
Vol 134 (3) ◽  
pp. 222-232
Author(s):  
Khulganaa Buyannemekh ◽  
Jessica B. Zito ◽  
Michelle L. Tomaszycki

Sign in / Sign up

Export Citation Format

Share Document