Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition

2015 ◽  
Vol 93 (7) ◽  
pp. 759-772 ◽  
Author(s):  
Min-Kyung Kang ◽  
Sin-Hye Park ◽  
Yean-Jung Choi ◽  
Daekeun Shin ◽  
Young-Hee Kang
2020 ◽  
Vol 134 (13) ◽  
pp. 1573-1592
Author(s):  
Xiaohong Sun ◽  
Kaipeng Huang ◽  
Xiao Haiming ◽  
Zeyuan Lin ◽  
Yan Yang ◽  
...  

Abstract Hyperglycemia-induced renal epithelial-to-mesenchymal transition (EMT) is a key pathological factor in diabetic renal tubulointerstitial fibrosis (RIF). Our previous studies have shown that connexin 43 (Cx43) activation attenuated the development of diabetic renal fibrosis. However, whether Cx43 regulates the EMT of renal tubular epithelial cells (TECs) and the pathological process of RIF under the diabetic conditions remains to be elucidated. In the present study, we identified that Cx43 protein expression was down-regulated in the kidney tissues of db/db mice as well as in high glucose (HG)-induced NRK-52E cells. Overexpression of Cx43 improved renal function in db/db spontaneous diabetic model mice, increased SIRT1 levels, decreased hypoxia-inducible factor (HIF)-1α expression, and reduced production of EMT markers and extracellular matrix (ECM) components. Additionally, Cx43 overexpression inhibited the EMT process and reduced the expression of ECM components such as fibronectin (FN), Collagen I, and Collagen IV in HG-induced NRK-52E cells, whereas Cx43 deficiency had the opposite effects. Mechanistically, Cx43 in a carboxyl-terminal signal transduction-dependent manner could up-regulate SIRT1 expression and enhance SIRT1-dependent deacetylation of HIF-1α to reduce HIF-1α activity, which eventually ameliorated renal EMT and diabetic RIF. Our study indicates the essential role of Cx43 in regulating renal EMT and diabetic RIF via regulating the SIRT1-HIF-1α signaling pathway and provides an experimental basis for Cx43 as a potential target for diabetic nephropathy (DN).


2021 ◽  
Author(s):  
Fengzhen Wang ◽  
Dong Sun ◽  
Haihan Sun ◽  
Bangjie Zuo ◽  
Kun Shi ◽  
...  

Abstract The aim of the study was to compare the role of metformin on tubulointerstitial fibrosis (TIF) in different stages of diabetic nephropathy (DN) in vivo and evaluate its mechanism in high-glucose-treated Renal tubular epithelial cells (RTECs) in vitro. Sprague-Dawley (SD) rats were used to establish model of DN, then the changes of biochemical indicators and body weight were measured. The degree of renal fibrosis was quantified via histological analysis, immunohistochemistry, and immunoblot. The underlying relationship between autophagy and DN was analyzed and the cellular regulatory mechanism of metformin on epithelial-to-mesenchymal transition (EMT) was detected. Metformin markedly improved renal function and showed histological restoration of renal tissues especially in the early stage of DN, with a significant improvement of autophagy and a low expression of fibrotic biomarkers (Fibronectin and Collagen I) in renal tissue. RTECs under hyperglycemic conditions exhibited inactivation of p-AMPK and activation of EMT. But the promotion of AMPK activated by metformin significantly improved renal autophagic function, inhibited the EMT of RTECs, attenuated TIF, so as to effectively prevent or delay the course of DN. This evidence provided theoretical and experimental basis for the following research on the potential clinical usefulness of metformin for the treatment of diabetic TIF.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Xiuli Zhang ◽  
Tingwen Guan ◽  
Boxuan Yang ◽  
Harvest F. Gu ◽  
Zhihong Chi

Abstract Zinc transporter 8 (ZnT8) transports zinc ions for crystallization and storage of insulin in pancreatic beta-cells and ZnT8 dysfunction is involved in pathogenesis of diabetes. The current study aimed to investigate whether ZnT8 has effects in pathophysiology of diabetic kidney disease (DKD) by using animal models for diabetes, including STZ-induced diabetic, db/db, ZnT8-KO, ZnT8-KO-STZ and ZnT8-KO-db/db mice. Results demonstrated that urine albumin to creatinine ratio and epithelial-to-mesenchymal transition (EMT) were increased in kidneys of ZnT8-KO-STZ and ZnT8-KO-db/db mice compared with C57BL/6 J and ZnT8-KO mice, while serum TGF-β1, IL-6, and TNF-α levels were elevated in parallel. In kidneys of mice intercrossed between ZnT8-KO and STZ-induced diabetic or db/db mice, these three inflammatory factors, ACR and EMT were also found to be increased compared with C57BL/6J, db/db and ZnT8-KO mice. Furthermore, ZnT8 up-regulation by hZnT8-EGFP reduced the levels of high glucose (HG)-induced EMT and inflammatory factors in normal rat kidney tubular epithelial cell (NRK-52E cells). Expression of phosphorylated Smad2/Smad3 was up-regulated after HG stimulation and further enhanced by ZnT8 siRNA but down-regulated after hZnT8-EGFP gene transfection. The current study thus provides the first evidence that ZnT8 protects against EMT-tubulointerstitial fibrosis though the restrain of TGF-β1/Smads signaling activation in DKD.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mirae Lee ◽  
Seok-hyung Kim ◽  
Jong Hyun Jhee ◽  
Tae Yeon Kim ◽  
Hoon Young Choi ◽  
...  

Abstract Background Renal tubulointerstitial fibrosis (TIF) plays an important role in the progression of chronic kidney disease (CKD) and its pathogenesis involves epithelial-to-mesenchymal transition (EMT) upon renal injury. Recombinant human erythropoietin (rhEPO) has been shown to display novel cytoprotective effects, in part by inhibiting transforming growth factor (TGF)-β1-induced EMT. Here, we evaluated the inhibitory effects of microparticles (MPs) derived from human EPO gene-transfected kidney mesenchymal stem cells (hEPO-KMSCs) against TGF-β1-induced EMT in Madin-Darby canine kidney (MDCK) cells and against TIF in mouse kidneys with unilateral ureteral obstruction (UUO). Methods EMT was induced in MDCK cells by treatment with TGF-β1 (5 ng/mL) for 48 h and then inhibited by co-treatment with rhEPO (100 IU/mL), mock gene-transfected KMSC-derived MPs (MOCK-MPs), or hEPO-KMSC-derived MPs (hEPO-MPs) for a further 48 h. UUO was induced in FVB/N mice, which were then treated with rhEPO (1000 IU/kg, intraperitoneally, every other day for 1 week), MOCK-MPs, or hEPO-MPs (80 μg, intravenously). Alpha-smooth muscle actin (α-SMA), fibronectin, and E-cadherin expression were evaluated in MDCK cells and kidney tissues, and the extent of TIF in UUO kidneys was assessed by immunohistochemical staining. Results TGF-β1 treatment significantly increased α-SMA and fibronectin expression in MDCK cells and decreased that of E-cadherin, while co-treatment with rhEPO, MOCK-MPs, or hEPO-MPs markedly attenuated these changes. In addition, rhEPO and hEPO-MP treatment effectively decreased phosphorylated Smad2 and Smad3, as well as phosphorylated p38 mitogen-activated protein kinase (MAPK) expression, suggesting that rhEPO and rhEPO-MPs can inhibit TGF-β1-induced EMT via both Smad and non-Smad pathways. rhEPO and hEPO-MP treatment also significantly attenuated the extent of renal TIF after 1 week of UUO compared to MOCK-MPs, with hEPO-MPs significantly reducing myofibroblast and F4/80+ macrophage infiltration as well as EMT marker expression in UUO renal tissues in a similar manner to rhEPO. Conclusions Our results demonstrate that hEPO-MPs modulate TGF-β1-induced EMT in MDCK cells via the Smad2, Smad3, and p38 MAPK pathways and significantly attenuated renal TIF in UUO kidneys.


2017 ◽  
Vol 42 (2) ◽  
pp. 697-712 ◽  
Author(s):  
Cheng-cheng Xiao ◽  
Jie Zhang ◽  
Peng-cheng Luo ◽  
Cong Qin ◽  
Yang Du ◽  
...  

Background: Tisp40, a transcription factor of the CREB/CREM family, is involved in cell proliferation, differentiation and other biological functions, but its role in renal tubulointerstitial fibrosis is unknown. Methods: In our study, we investigated the effects of Tisp40 on extracellular matrix (ECM) accumulation, epithelial-mesenchymal transition (EMT) and the underlying molecular mechanisms in transforming growth factor-β (TGF-β)-stimulated TCMK-1 cells by quantitative real-time polymerase chain reaction (qPCR), Western blot analysis and immunofluorescence in vitro, and further explored the role of Tisp40 on renal fibrosis induced by ischemia-reperfusion (I/R) by qPCR, Western blot analysis, hydroxyproline analysis, Masson trichrome staining and immunohistochemistry staining in vivo. Results: The data showed that Tisp40 was upregulated in a model of renal fibrosis induced by I/R injury (IRI). Upon IRI, Tisp40-deficient mice showed attenuated renal fibrosis compared with wild-type mice. Furthermore, the expression of α-smooth muscle actin, E-cadherin, fibronectin, and collagen I was suppressed. Tisp40 overexpression aggravated ECM accumulation and EMT in the TGF-β-stimulated TCMK-1 cell line, whereas the opposite occurred in cells treated with small interfering RNA (siRNA) targeting Tisp40. Importantly, it is changes in the Smad pathway that attenuate renal fibrosis. Conclusion: These findings suggest that Tisp40 plays a critical role in the TGF-β/ Smads pathway involved in this process. Hence, Tisp40 could be a useful therapeutic target in the fight against renal tubulointerstitial fibrosis.


2018 ◽  
Vol 46 (2) ◽  
pp. 451-460 ◽  
Author(s):  
Fang-Fang He ◽  
Ren-Yu You ◽  
Chen Ye ◽  
Chun-Tao Lei ◽  
Hui Tang ◽  
...  

Background/Aims: Renal tubular epithelial cells and fibroblasts are the main sources of myofibroblasts, and these cells produce the extracellular matrix during tubulointerstitial fibrosis (TIF). Histone deacetylases (HDAC) inhibitors exert an antifibrogenic effect in the skin, liver and lung. Sirtuin 2 (SIRT2), which is a class III HDAC, is an important member of NAD+-dependent protein deacetylases. The current study evaluated the role of SIRT2 in renal TIF. Methods: Immunohistochemical staining and Western blot were performed to evaluate SIRT2 expression in TIF patients and unilateral urethral obstruction (UUO) mice. Western blot was used to assess the protein levels of SIRT2, α-SMA, collagen III, fibronectin, and MDM2 in tubular epithelial cells and fibroblasts. The specific inhibitor AGK2 was used to inhibit SIRT2 activity, and targeted siRNA was used to suppress SIRT2 expression. Results: SIRT2 expression increased in the tubulointerstitium of TIF patients and UUO mice. SIRT2 inhibition ameliorated TIF in UUO mice. SIRT2 expression in tubular cells was unchanged after exposure to TGF-β1. The SIRT2-specifc inhibitor AGK2 did not attenuate TGF-β1-induced tubular epithelial-mesenchymal transition. However, SIRT2 was upregulated in fibroblasts, and fibroblasts were activated after TGF-β1 treatment. Genetic knockdown and chemical inhibition of SIRT2 attenuated TGF-β1-induced fibroblast activation. We also explored the downstream signaling of SIRT2 during fibroblast activation. Genetic knockdown and chemical inhibition of SIRT2 suppressed TGF-β1-induced increase in MDM2 expression, and inhibition of the MDM2-p53 interaction using Nutlin-3 did not suppress SIRT2 upregulation. Conclusion: Our results suggest that SIRT2 participates in the activation of fibroblasts and TIF, which is mediated via regulation of the MDM2 pathway, and the downregulation of SIRT2 may be a therapeutic strategy for renal fibrosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fengzhen Wang ◽  
Haihan Sun ◽  
Bangjie Zuo ◽  
Kun Shi ◽  
Xin Zhang ◽  
...  

AbstractThis study aimed at comparing the effects of metformin on tubulointerstitial fibrosis (TIF) in different stages of diabetic nephropathy (DN) in vivo and evaluating the mechanism in high glucose (HG)-treated renal tubular epithelial cells (RTECs) in vitro. Sprague–Dawley (SD) rats were used to establish a model of DN, and the changes of biochemical indicators and body weight were measured. The degree of renal fibrosis was quantified using histological analysis, immunohistochemistry, and immunoblot. The underlying relationship between autophagy and DN, and the cellular regulatory mechanism of metformin on epithelial-to-mesenchymal transition (EMT) were investigated. Metformin markedly improved renal function and histological restoration of renal tissues, especially in the early stages of DN, with a significant increase in autophagy and a decrease in the expression of fibrotic biomarkers (fibronectin and collagen I) in renal tissue. Under hyperglycemic conditions, renal tubular epithelial cells inactivated p-AMPK and activated partial EMT. Metformin-induced AMPK significantly ameliorated renal autophagic function, inhibited the partial EMT of RTECs, and attenuated TIF, all of which effectively prevented or delayed the onset of DN. This evidence provides theoretical and experimental basis for the following research on the potential clinical application of metformin in the treatment of diabetic TIF.


2016 ◽  
Vol 37 (5) ◽  
pp. 1317-1327 ◽  
Author(s):  
YONGHENG BAI ◽  
HONG LU ◽  
CHENGCHENG LIN ◽  
YAYA XU ◽  
DANNÜ HU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document