scholarly journals Dapagliflozin reduces thrombin generation and platelet activation: implications for cardiovascular risk reduction in type 2 diabetes mellitus

Diabetologia ◽  
2021 ◽  
Author(s):  
Christina Kohlmorgen ◽  
Stephen Gerfer ◽  
Kathrin Feldmann ◽  
Sören Twarock ◽  
Sonja Hartwig ◽  
...  

Abstract Aims/hypothesis People with diabetes have an increased cardiovascular risk with an accelerated development of atherosclerosis and an elevated mortality rate after myocardial infarction. Therefore, cardioprotective effects of glucose-lowering therapies are of major importance for the pharmacotherapy of individuals with type 2 diabetes. For sodium–glucose cotransporter 2 inhibitors (SGLT2is), in addition to a reduction in blood glucose, beneficial effects on atherosclerosis, obesity, renal function and blood pressure have been observed. Recent results showed a reduced risk of worsening heart failure and cardiovascular deaths under dapagliflozin treatment irrespective of the diabetic state. However, the underlying mechanisms are yet unknown. Platelets are known drivers of atherosclerosis and atherothrombosis and disturbed platelet activation has also been suggested to occur in type 2 diabetes. Therefore, the present study investigates the impact of the SGLT2i dapagliflozin on the interplay between platelets and inflammation in atherogenesis. Methods Male, 8-week-old LDL-receptor-deficient (Ldlr−/−) mice received a high-fat, high-sucrose diabetogenic diet supplemented without (control) or with dapagliflozin (5 mg/kg body weight per day) for two time periods: 8 and 25 weeks. In a first translational approach, eight healthy volunteers received 10 mg dapagliflozin/day for 4 weeks. Results Dapagliflozin treatment ameliorated atherosclerotic lesion development, reduced circulating platelet–leucocyte aggregates (glycoprotein [GP]Ib+CD45+: 29.40 ± 5.94 vs 17.00 ± 5.69 cells, p < 0.01; GPIb+lymphocyte antigen 6 complex, locus G+ (Ly6G): 8.00 ± 2.45 vs 4.33 ± 1.75 cells, p < 0.05) and decreased aortic macrophage infiltration (1.31 ± 0.62 vs 0.70 ± 0.58 ×103 cells/aorta, p < 0.01). Deeper analysis revealed that dapagliflozin decreased activated CD62P-positive platelets in Ldlr−/− mice fed a diabetogenic diet (3.78 ± 1.20% vs 2.83 ± 1.06%, p < 0.01) without affecting bleeding time (85.29 ± 37.27 vs 89.25 ± 16.26 s, p = 0.78). While blood glucose was only moderately affected, dapagliflozin further reduced endogenous thrombin generation (581.4 ± 194.6 nmol/l × min) × 10−9 thrombin vs 254.1 ± 106.4 (nmol/l × min) × 10−9 thrombin), thereby decreasing one of the most important platelet activators. We observed a direct inhibitory effect of dapagliflozin on isolated platelets. In addition, dapagliflozin increased HDL-cholesterol levels. Importantly, higher HDL-cholesterol levels (1.70 ± 0.58 vs 3.15 ± 1.67 mmol/l, p < 0.01) likely contribute to dapagliflozin-mediated inhibition of platelet activation and thrombin generation. Accordingly, in line with the results in mice, treatment with dapagliflozin lowered CD62P-positive platelet counts in humans after stimulation by collagen-related peptide (CRP; 88.13 ± 5.37% of platelets vs 77.59 ± 10.70%, p < 0.05) or thrombin receptor activator peptide-6 (TRAP-6; 44.23 ± 15.54% vs 28.96 ± 11.41%, p < 0.01) without affecting haemostasis. Conclusions/interpretation We demonstrate that dapagliflozin-mediated atheroprotection in mice is driven by elevated HDL-cholesterol and ameliorated thrombin–platelet-mediated inflammation without interfering with haemostasis. This glucose-independent mechanism likely contributes to dapagliflozin’s beneficial cardiovascular risk profile. Graphical abstract

FEBS Letters ◽  
2003 ◽  
Vol 545 (2-3) ◽  
pp. 103-104 ◽  
Author(s):  
B Zietz ◽  
H Herfarth ◽  
G Paul ◽  
A Ehling ◽  
U Müller-Ladner ◽  
...  

2019 ◽  
Vol 160 (34) ◽  
pp. 1346-1352 ◽  
Author(s):  
Zoltán Kender ◽  
Jan Benedikt Groener ◽  
Péter Reismann ◽  
Stefan Kopf

Abstract: Introduction: Some meta-analyses suggested a positive effect of metformin therapy on lipid parameters, but the potential beneficial effect of metformin on cardiovascular risk in type 2 diabetes is not entirely clear. Aim: We investigated the effect of metformin therapy on lipid parameters and cardiovascular risk in patients with type 2 diabetes. Method: In a cross-sectional, monocentric study, 102 patients with type 2 diabetes without lipid-lowering medication were analysed for lipid profile and cardiovascular risk (United Kingdom Prospective Diabetes Study Risk Calculator) depending on metformin therapy. The patients were divided into two subgroups regarding with (n = 52) or without metformin therapy (n = 50). Results: Patients with metformin therapy had significantly lower total cholesterol and LDL cholesterol levels than patients without metformin (p<0.01 and p<0.05). This effect was independent from glucose control. No intrinsic effect of metformin could be found on systolic blood pressure, HDL cholesterol, triglycerides, and long-term cardiovascular risk using a multivariable risk assessment score. Conclusion: Metformin therapy has beneficial effects on cholesterol levels without improving cardiovascular risk in patients with type 2 diabetes. Orv Hetil. 2019; 160(34): 1346–1352.


2008 ◽  
Vol 11 (5) ◽  
pp. 505-516 ◽  
Author(s):  
Nicole Y. Souren ◽  
Maurice P. Zeegers ◽  
Rob G. J. H. Janssen ◽  
Anja Steyls ◽  
Marij Gielen ◽  
...  

AbstractInsulin resistance and obesity are underlying causes of type 2 diabetes and therefore much interest is focused on the potential genes involved. A series of anthropometric and metabolic characteristic were measured in 240 MZ and 112 DZ twin pairs recruited from the East Flanders Prospective Twin Survey. Microsatellite markers located close to ABCC8, ADIPOQ, GCK, IGF1, IGFBP1, INSR, LEP, LEPR, PPARγ and the RETN gene were genotyped. Univariate single point variance components linkage analyses were performed using two methods: (1) the standard method, only comprising the phenotypic and genotypic data of the DZ twin pairs and (2) the extended method, also incorporating the phenotypic data of the MZ twin pairs. Suggestive linkages (LOD > 1) were observed between the ABCC8 marker and waist-to-hip ratio and HDL-cholesterol levels. Both markers flanking ADIPOQ showed suggestive linkage with triglycerides levels, the upstream marker also with body mass and HDL-cholesterol levels. The IGFBP1 marker showed suggestive linkage with fat mass, fasting insulin and leptin levels and the LEP marker showed suggestive linkage with birth weight. This study suggests that DNA variants in ABCC8, ADIPOQ, IGFBP1 and LEP gene region may predispose to type 2 diabetes. In addition, the two methods used to perform linkage analyses yielded similar results. This was however not the case for birth weight where chorionicity seems to be an important confounder.


2012 ◽  
Vol 39 (3) ◽  
pp. 397-405 ◽  
Author(s):  
Lisa M. McAndrew ◽  
Melissa A. Napolitano ◽  
Leonard M. Pogach ◽  
Karen S. Quigley ◽  
Kerri Leh Shantz ◽  
...  

2019 ◽  
Vol 12 ◽  
pp. 117955141986681 ◽  
Author(s):  
Yuka Kamijo ◽  
Hideto Ishii ◽  
Tomohiko Yamamoto ◽  
Kunihisa Kobayashi ◽  
Hiroyuki Asano ◽  
...  

Introduction: Recently, the sodium-glucose cotransporter2 (SGLT2) inhibitor empagliflozin has been shown to lower cardiovascular risk among diabetic patients. It is intriguing that some SGLT2 inhibitors have been found to increase low-density lipoprotein (LDL) cholesterol levels, while the relevance to high-density lipoprotein (HDL) cholesterol is unknown. Although the inhibitory effect of SGLT2 inhibitors on glucose reabsorption may accelerate compensatory lipid metabolism and subsequently reduce body weight and affect the lipid profile, much remains unclear about this mechanism. Therefore, we conducted this study to investigate in detail how canagliflozin affects lipoprotein fractions including LDL and HDL subclasses. Materials and Methods: This study is a multicenter prospective study. The participants were patients with 22 type 2 diabetes (60.7 ± 11.6 years, 59.1% of men) who had HbA1c ⩾ 7.0% and consented to participate in the study. They were administered 100 mg canagliflozin orally once per day. Biochemistry test and cholesterol levels of 20 lipoprotein fractions (G1-G20) using high performance liquid chromatography methods were examined before and after 12 weeks of treatment period. Results: Significant decreases were observed in the participants’ body weight (69.7 to 67.9 kg, P < .001), systolic blood pressure (129.3 to 119.5 mm Hg, P < .01), and HbA1c (8.5% to 7.4%, P < .001). Cholesterol levels in the 20 lipoprotein fractions increased for very large HDL (G14, G15) and large HDL (G16) ( P < .05). Conclusions: Reduction in body weight, improvement of blood glucose levels, and increases in very large HDL and large HDL subclasses were observed after canagliflozin treatment. These beneficial changes might contribute to subsequent suppression of cardiovascular outcomes.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1905 ◽  
Author(s):  
Omorogieva Ojo ◽  
Sharon Marie Weldon ◽  
Trevor Thompson ◽  
Rachel Crockett ◽  
Xiao-Hua Wang

Background: The prevalence of diabetes is on the increase in the UK and worldwide, partly due to unhealthy lifestyles, including poor dietary regimes. Patients with diabetes and other co-morbidities such as stroke, which may affect swallowing ability and lead to malnutrition, could benefit from enteral nutrition, including the standard formula (SF) and diabetes-specific formulas (DSF). However, enteral nutrition presents its challenges due to its effect on glycaemic control and lipid profile. Aim: The aim of this review was to evaluate the effectiveness of diabetes-specific enteral nutrition formula versus SF in managing cardiometabolic parameters in patients with type 2 diabetes. Method: This review was conducted in accordance with the preferred reporting items for systematic reviews and meta-analyses. Three databases (Pubmed, EMBASE, PSYCInfo) and Google scholar were searched for relevant articles from inception to 2 January 2019 based on Population, Intervention, Comparator, Outcomes and Study designs (PICOS) framework. Key words, Medical Subject Heading (MeSH) terms, and Boolean operators (AND/OR) formed part of the search strategy. Articles were evaluated for quality and risks of bias. Results: Fourteen articles were included in the systematic review and five articles were selected for the meta-analysis. Based on the findings of the review and meta-analysis, two distinct areas were evident: the effect of DSF on blood glucose parameters and the effect of DSF on lipid profile. All fourteen studies included in the systematic review showed that DSF was effective in lowering blood glucose parameters in patients with type 2 diabetes compared with SF. The results of the meta-analysis confirmed the findings of the systematic review with respect to the fasting blood glucose, which was significantly lower (p = 0.01) in the DSF group compared to SF, with a mean difference of −1.15 (95% CI −2.07, −0.23) and glycated haemoglobin, which was significantly lower (p = 0.005) in the DSF group compared to the SF group following meta-analysis and sensitivity analysis. However, in relation to the sensitivity analysis for the fasting blood glucose, differences were not significant between the two groups when some of the studies were removed. Based on the systematic review, the outcomes of the studies selected to evaluate the effect of DSF on lipid profile were variable. Following the meta-analysis, no significant differences (p > 0.05) were found between the DSF and SF groups with respect to total cholesterol, LDL cholesterol and triglyceride. The level of the HDL cholesterol was significantly higher (p = 0.04) in the DSF group compared to the SF group after the intervention, with a mean difference of 0.09 (95% CI, 0.00, 0.18), although this was not consistent based on the sensitivity analysis. The presence of low glycaemic index (GI) carbohydrate, the lower amount of carbohydrate and the higher protein, the presence of mono-unsaturated fatty acids and the different amounts and types of fibre in the DSF compared with SF may be responsible for the observed differences in cardiometabolic parameters in both groups. Conclusion: The results provide evidence to suggest that DSF is effective in controlling fasting blood glucose and glycated haemoglobin and in increasing HDL cholesterol, but has no significant effect on other lipid parameters. However, our confidence in these findings would be increased by additional data from further studies.


Diabetes Care ◽  
2000 ◽  
Vol 23 (11) ◽  
pp. 1679-1685 ◽  
Author(s):  
R. Boizel ◽  
P. Y. Benhamou ◽  
B. Lardy ◽  
F. Laporte ◽  
T. Foulon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document