Effects of Glyphosate on Growth Rate, Metabolic Rate and Energy Reserves of Early Juvenile Crayfish, Cherax quadricarinatus M.

2014 ◽  
Vol 92 (6) ◽  
pp. 631-635 ◽  
Author(s):  
L. Avigliano ◽  
A. V. Fassiano ◽  
D. A. Medesani ◽  
M. C. Ríos de Molina ◽  
E. M. Rodríguez
2013 ◽  
Vol 103 (2) ◽  
pp. 138-144 ◽  
Author(s):  
Anouk Chaulet ◽  
Itzick Vatnick ◽  
Enrique M. Rodríguez

Growth, metabolic rate, and energy reserves of Cherax quadricarinatus (von Martens, 1868) juveniles were evaluated in crayfish acclimated for 16 weeks to either 25ºC (temperature near optimum) or 20ºC (marginal for the species). Additionally, the modulating effect of ecdsyone on acclimation was studied. After 12 weeks of exposure, weight gain of both experimental groups acclimated to 25ºC (control: C25, and ecdysone treated: E25) was significantly higher than that of those groups acclimated to 20ºC (C20 and E20). A total compensation in metabolic rate was seen after acclimation from 25ºC to 20ºC; for both the control group and the group treated with ecdysone. A Q10value significantly higher was only observed in the group acclimated to 20ºC and treated with ecdysone. A reduction of glycogen reserves in both hepatopancreas and muscle, as well as a lower protein content in muscle, was seen in both groups acclimated to 20ºC. Correspondingly, glycemia was always higher in these groups. Increased lipid levels were seen in the hepatopancreas of animals acclimated to 20ºC, while a higher lipid level was also observed in muscle at 20ºC, but only in ecdysone-treated crayfish.


1999 ◽  
Vol 202 (18) ◽  
pp. 2485-2493
Author(s):  
R.E. Bishop ◽  
J.J. Torres

Leptocephali are the unusual transparent larvae that are typical of eels, bonefish, tarpon and ladyfish. Unlike the larvae of all other fishes, leptocephali may remain in the plankton as larvae for several months before metamorphosing into the juvenile form. During their planktonic phase, leptocephali accumulate energy reserves in the form of glycosaminoglycans, which are then expended to fuel metamorphosis. The leptocephalus developmental strategy is thus fundamentally different from that exhibited in all other fishes in two respects: it is far longer in duration and energy reserves are accumulated. It was anticipated that the unusual character of leptocephalus development would be reflected in the energy budget of the larva. This study describes the allocation of energy to metabolism and excretion, two important elements of the energy budget. Metabolic rates were measured directly in four species of leptocephali, Paraconger caudilimbatus, Ariosoma balearicum, Gymnothorax saxicola and Ophichthus gomesii, using sealed-jar respirometry at sea. Direct measurements of metabolic rates were corroborated by measuring activities of lactate dehydrogenase and citrate synthase, two key enzymes of intermediary metabolism, in addition to that of Na(+)/K(+)-ATPase, a ubiquitous ion pump important in osmotic regulation. Excretion rates were determined by subsampling the sea water used in the respiratory incubations. The entire premetamorphic size range for each species was used in all assays. Mass-specific oxygen consumption rate, excretion rate and all enzyme activities (y) declined precipitously with increasing mass (M) according to the equation y=aM(b), where a is a species-specific constant and −1.74<b<-0.44. In leptocephali, the highly negative slope of the familiar allometric equation describing the relationship between mass-specific metabolic rate and mass, normally between −0.33 and 0, showed that a massive decline in metabolic rate occurs with increasing size. The result suggests that the proportion of actively metabolizing tissue also declines with size, being replaced in large measure by the metabolically inert energy depot, the glycosaminoglycans. Leptocephali can thus grow to a large size with minimal metabolic penalty, which is an unusual and successful developmental strategy.


2000 ◽  
Vol 27 ◽  
pp. 39-53 ◽  
Author(s):  
G. C. Emmans ◽  
I. Kyriazakis

AbstractBreeders of poultry and pigs have selected for some combination of increased growth rate, decreased fatness and increased muscularity. Increasingly various fitness traits are included in the index used. The consequences of such selection include complex effects on nutritional and environmental requirements, at least some of which are reliably predictable using suitable models. Appropriate changes to the environment and to nutrition as selection proceeds will help to avoid unwanted effects occurring. Among the predictable effects are that higher ratios of nutrients to energy, and lower temperatures, will be needed by the improved genotypes. Selection for growth rate must eventually exhaust the capacity of the support systems – digestive, respiratory, circulatory and excretory – to cope with the increased metabolic rate. Selection for increased yield of valuable parts will cause these problems to occur earlier. While it is possible to predict that these problems will occur it cannot be predicted when they will. Breeders need to be aware of these problems, and use all possible routes to help them in reducing their severity. Where the appropriate actions for fitness selection, and nutritional and environmental modifications, are taken the occurrence of the problems will be delayed.


1976 ◽  
Vol 231 (3) ◽  
pp. 903-912 ◽  
Author(s):  
B Pinshow ◽  
MA Fedak ◽  
DR Battles ◽  
K Schmidt-Nielsen

During the antarctic winter emperor penguins (Aptenodytes forsteri) spend up to four mo fasting while they breed at rookeries 80 km or more from the sea, huddling close together in the cold. This breeding cycle makes exceptional demands on their energy reserves, and we therefore studied their thermoregulation and locomotion. Rates of metabolism were measured in five birds (mean body mass, 23.37 kg) at ambient temperatures ranging from 25 to -47 degrees C. Between 20 and -10 degrees C the metabolic rate (standard metabolic rate (SMR)) remained neraly constant, about 42.9 W. Below -10 degrees C metabolic rate increased lineraly with decreasing ambient temperature and at -47 degrees C it was 70% above the SMR. Mean thermal conductance below -10 degrees C was 1.57 W m-2 degrees C-1. Metabolic rate during treadmill walking increased linearly with increasing speed. Our data suggest that walking 200 km (from the sea to the rookery and back) requires less than 15% of the energy reserves of a breeding male emperor penguin initially weighing 35 kg. The high energy requirement for thermoregulation (about 85%) would, in the absence of huddling, probably exceed the total energy reserves.


Parasitology ◽  
1995 ◽  
Vol 110 (5) ◽  
pp. 583-590 ◽  
Author(s):  
E. E. Lewis ◽  
S. Selvan ◽  
J. F. Campbell ◽  
R. Gaugler

SUMMARYStudies of foraging strategies are often complicated by competing goals of the forager. In contrast, non-feeding infective juvenile entomopathogenic nematodes forage exclusively for a single host. Two questions were posed: (1) what is the relationship between metabolic rate, energy reserves and foraging strategy and (2) when a foraging strategy fails, will an infective-stage parasite switch strategies? Three species of entomopathogenic nematodes were stored in water and changes in their behaviour, metabolic rate, energy reserves, and infectivity were measured throughout the storage period. Steinernema carpocapsae ambushes insect hosts, whereas S. glaseri and Heterorhabditis bacteriophora cruise forage. Steinernema carpocapsae was least active and had the lowest metabolic rate. Heterorhabditis bacteriophora was more active and had the highest metabolic rate. Steinernema glaseri was most active and had an intermediate metabolic rate. Neither cruising species changed foraging strategy. Steinernema carpocapsae decreased nictation (a behaviour associated with ambushing only) and increased their locomotory rate. Any change in searching strategy occurred without assessment of the profitability or distribution of potential hosts, but the advantage this confers is unknown.


2019 ◽  
Vol 15 (4) ◽  
pp. 20180837 ◽  
Author(s):  
Orvil Grunmeier ◽  
Michael D. D'Emic

Osteocytes are mature versions of osteoblasts, bone-forming cells that develop in two ways: via ‘static’ osteogenesis, differentiating and ossifying tissue in situ to form a scaffold upon which other bone can form, or ‘dynamic’ osteogenesis, migrating to infill or lay down bone around neurovasculature. A previous study regressed the volume of osteocyte lacunae derived from dynamic osteogenesis (DO) of a broad sample of extant bird species against body mass, the growth rate constant ( k ), mass-specific metabolic rate, genome size, and erythrocyte size. There were significant relationships with body mass, growth rate, metabolic rate, and genome size, with the latter being the strongest. Using the same avian histological dataset, we measured over 3800 osteocyte lacunar axes derived from static osteogenesis (SO) in order to look for differences in the strength of form–function relationships inferred for DO-derived lacunae at the cellular and tissue levels. The relationship between osteocyte lacunar volume and body mass was stronger when measuring SO lacunae, whereas relationships between osteocyte lacunar volume versus growth rate and basal metabolic rate disappeared. The relationship between osteocyte lacuna volume and genome size remained significant and moderately strong when measuring SO lacunae, whereas osteocyte lacuna volume was still unrelated to erythrocyte size. Our results indicate that growth and metabolic rate signals are contained in avian DO but not SO osteocyte lacunae, suggesting that the former should be used in estimating these parameters in extinct animals.


Sign in / Sign up

Export Citation Format

Share Document