A revised slug model boundary layer correction for starting jet vorticity flux

2004 ◽  
Vol 17 (4) ◽  
pp. 293-295 ◽  
Author(s):  
John O. Dabiri ◽  
Morteza Gharib
1996 ◽  
Vol 309 ◽  
pp. 45-84 ◽  
Author(s):  
J. Andreopoulos ◽  
J. H. Agui

Four high-frequency-response pressure transducers with 10 viscous units resolution each have been used to obtain simultaneously the fluctuating pressure gradients at the wall of a zero-pressure-gradient boundary layer and then to compute the vorticity flux away from the wall. Since the viscous force on an element of incompressible fluid is determined by the local vorticity gradients, understanding of their dynamical characteristics is essential in identifying the turbulent structure. Extremely high and low amplitudes of both vorticity gradients have been observed which contribute significantly to their statistics although they have low probability of appearance. The r.m.s. of the vorticity flux when scaled with inner wall variables depends very strongly on the Reynolds number, indicating a breakdown of this type of scaling. The application of a small threshold to the data indicated two preferential directions of the vorticity flux vector. An attempt has been made to identify these high- and low-amplitude signals with physical phenomena associated with bursting-sweep processes. Vortical structures carrying bipolar vorticity are the dominant wall structures which are associated with the violent events characterized by large fluctuations of vorticity flux.


Author(s):  
Mahmoud Ardebili ◽  
Yiannis Andreopoulos

An experimental investigation of a separated boundary layer flow has been attempted which has been created by perturbing a flat plate flow with a favorable pressure gradient immediately followed by an adverse pressure gradient. The aim of the research program is possible control of flow separation by means of free stream turbulence. The flow is configured in a large-scale low speed wind tunnel where measurements of turbulence can be obtained with high spatial and temporal resolution. A model has been designed by using CFD analysis. Mean wall pressure and vorticity flux measurements are reported in this paper. Twelve experiments with three different mesh size grids at three different Reynolds numbers have been carried out. Three bulk flow parameters seem to characterize the flow: The Reynolds number of the boundary layer, Re+, the Reynolds number of the flow through the grid, ReM, and the solidity of the grid. It was found that the pressure coefficient depends weakly on the solidity of the grids. Vorticity flux also depends on the grid used to generate free stream turbulence. The location of maximum or minimum vorticity flux moves upstream at higher ReM.


2012 ◽  
Vol 700 ◽  
pp. 382-405 ◽  
Author(s):  
L. Gao ◽  
S. C. M. Yu

AbstractExperiments on a circular starting jet generated by a piston–cylinder arrangement, over a range of Reynolds number from $2600$ to $5600$, are conducted so as to investigate the development of the trailing shear layer during the leading vortex ring formation, as well as the corresponding effects on the pinch-off process. Results obtained by digital particle image velocimetry (DPIV) show that secondary vortices start to develop in the trailing jet only after the critical time scale, the ‘formation number’, is achieved. The subsequent growth of the secondary vortices reduces the vorticity flux being fed into the leading vortex ring and, as a consequence, constrains the growth of leading vortex ring with larger circulation. Evolution of perturbation waves into secondary vortices is found to associate with growth and translation of the leading vortex ring during the formation process. A dimensionless parameter ‘$A$’, defined as ${\Gamma }_{\mathit{ring}} / ({x}_{\mathit{core}} \mrm{\Delta} U$), is therefore proposed to characterize the effect of the leading vortex ring on suppressing the nonlinear development of instability in the trailing shear layer, i.e. the initial roll-up of the secondary vortices. In a starting jet, $A$ follows a decreasing trend with the formation time ${t}^{\ensuremath{\ast} } $. A critical value ${A}_{c} = 1. 1\pm 0. 1$ is identified experimentally, which physically coincides with the initiation of the first secondary vortex roll-up and, therefore, indicates the onset of pinch-off process.


Author(s):  
Paul S. Krueger

Two common configurations for generating vortex rings via jet pulses are the tube and orifice geometries. The orifice geometry forces the flow to contract as it approaches the jet exit plane, which can strongly affect vorticity flux and the circulation of the resulting ring. The author’s recent extension of the traditional slug model for vortex ring circulation (called the “pressure corrected” or PC model) accounts for the geometric differences between the tube and orifice cases, but model validation for the orifice geometry has been limited due to the lack of data for this configuration. The present study compares process of circulation generation by tube and orifice geometries using numerical simulations of finite duration jets from tube and orifice openings. Total jet slug length-to-diameter ratios (L/D) in the range of 0.5 to 3.5 and a jet Reynolds number of 2000 are considered. The numerical results confirm the underlying assumptions of the PC model. The model results for the tube geometry are within 14% of the numerical results. Incorporating the scaling of ring velocity with ejected jet length (X/D) obtained from the present numerical results improves the predictions for the orifice case, giving accuracy to within 20%. The overall geometry effect appears as a two-fold increase in circulation for the orifice case over the tube case at the same L/D.


2019 ◽  
Vol 76 (2) ◽  
pp. 421-432 ◽  
Author(s):  
Xiaodong Tang ◽  
Zhe-Min Tan ◽  
Juan Fang ◽  
Erin B. Munsell ◽  
Fuqing Zhang

Abstract This work examines the impacts of the diurnal radiation contrast on the contraction rate of the radius of maximum wind (RMW) during intensification of Hurricane Edouard (2014) through convection-permitting simulations. Rapid contraction of RMW occurs both in the low and midlevels for the control run and the sensitivity run without solar insolation, while the tropical cyclone contracts more slowly in the low levels and later in the midlevels and thereafter fails to intensify continuously in the absence of the night phase, under weak vertical wind shear (~4 m s−1). The clouds at the top of the boundary layer absorb solar shortwave heating during the daytime, which enhanced the temperature inversion there and increased the convective inhibition, while nighttime destabilization and moistening in low levels through radiative cooling decrease convective inhibition and favor more convection inside the RMW than in the daytime phase. The budget analysis of the tangential wind tendency reveals that the greater positive radial vorticity flux inside of the RMW is the key RMW contraction mechanism in the boundary layer at night because of the enhanced convection. However, the greater positive vertical advection of tangential wind inside of the RMW dominates the RMW contraction in the midlevels.


2018 ◽  
Vol 851 ◽  
pp. 479-506 ◽  
Author(s):  
João H. Bettencourt ◽  
Frédéric Dias

In this paper we study the wall pressure and vorticity fields of the Stokes boundary layer in the intermittently turbulent regime through direct numerical simulation (DNS). The DNS results are compared to experimental measurements and a good agreement is found for the mean and fluctuating velocity fields. We observe maxima of the turbulent kinetic energy and wall shear stress in the early deceleration stage and minima in the late acceleration stage. The wall pressure field is characterized by large fluctuations with respect to the root mean square level, while the skewness and kurtosis of the wall pressure show significant deviations from their Gaussian values. The wall vorticity components show different behaviours during the cycle: for the streamwise component, positive and negative fluctuations have the same probability of occurrence throughout the cycle while the spanwise fluctuations favour negative extrema in the acceleration stage and positive extrema in the deceleration stage. The wall vorticity flux is a function of the wall pressure gradients. Vorticity creation at the wall reaches a maximum at the beginning of the deceleration stage due to the increase of uncorrelated wall pressure signals. The spanwise vorticity component is the most affected by the oscillations of the outer flow. These findings have consequences for the design of wave energy converters. In extreme seas, wave induced fluid velocities can be very high and extreme wall pressure fluctuations may occur. Moreover, the spanwise vortical fields oscillate violently in a wave cycle, inducing strong interactions between vortices and the device that can enhance the device motion.


1995 ◽  
Vol 298 ◽  
pp. 1-22 ◽  
Author(s):  
J. J. Miau ◽  
C. R. Chen ◽  
J. H. Chou

A vertically oscillating plate in a boundary layer regulates the vorticity flux rate with respect to time and displaces the vorticity away from the wall. These phenomena are discussed for non-dimensional frequencies of the oscillating plate K = 0, 0.006, 0.01 and 0.02. The velocity data obtained by a split-fibre probe near the wall in the region immediately downstream of the oscillating plate lead to a discussion on the behaviour of the flow structures with respect to the non-dimensional frequency. The physical understanding deduced is complementary to the findings of a smoke-wire flow visualization conducted in this study. An integral analysis of the momentum equation indicates that the mean vorticity flux rate of the present flow is composed of contributions from both the parallel shear layer and the curving streamline. This analysis further suggests that the mean vorticity flux rate can be obtained through a combination of pressure measurements at the wall and in the irrotational region of the flow.


Sign in / Sign up

Export Citation Format

Share Document