A vertically oscillating plate disturbing the development of a boundary layer

1995 ◽  
Vol 298 ◽  
pp. 1-22 ◽  
Author(s):  
J. J. Miau ◽  
C. R. Chen ◽  
J. H. Chou

A vertically oscillating plate in a boundary layer regulates the vorticity flux rate with respect to time and displaces the vorticity away from the wall. These phenomena are discussed for non-dimensional frequencies of the oscillating plate K = 0, 0.006, 0.01 and 0.02. The velocity data obtained by a split-fibre probe near the wall in the region immediately downstream of the oscillating plate lead to a discussion on the behaviour of the flow structures with respect to the non-dimensional frequency. The physical understanding deduced is complementary to the findings of a smoke-wire flow visualization conducted in this study. An integral analysis of the momentum equation indicates that the mean vorticity flux rate of the present flow is composed of contributions from both the parallel shear layer and the curving streamline. This analysis further suggests that the mean vorticity flux rate can be obtained through a combination of pressure measurements at the wall and in the irrotational region of the flow.

2008 ◽  
Vol 65 (1) ◽  
pp. 3-20 ◽  
Author(s):  
Quanxin Xia ◽  
Ching-Long Lin ◽  
Ronald Calhoun ◽  
Rob K. Newsom

Abstract Two coherent Doppler lidars from the U.S. Army Research Laboratory (ARL) and Arizona State University (ASU) were deployed in the Joint Urban 2003 atmospheric dispersion field experiment (JU2003) held in Oklahoma City, Oklahoma. The dual-lidar data were used to evaluate the accuracy of a four-dimensional variational data assimilation (4DVAR) method and to identify the coherent flow structures in the urban boundary layer. The objectives of the study are threefold. The first objective is to examine the effect of eddy viscosity models on the quality of retrieved velocity data. The second objective is to determine the fidelity of single-lidar 4DVAR and evaluate the difference between single- and dual-lidar retrievals. The third objective is to inspect flow structures above some geospatial features on the land surface. It is found that the approach of treating eddy viscosity as part of the control variables yields better results than the approach of prescribing viscosity. The ARL single-lidar 4DVAR is able to retrieve radial velocity fields with an accuracy of 98% in the along-beam direction and 80%–90% in the cross-beam direction. For the dual-lidar 4DVAR, the accuracy of retrieved radial velocity in the ARL cross-beam direction improves to 90%–94% of the ASU radial velocity data. By using the dual-lidar-retrieved data as a reference, the single-lidar 4DVAR is able to recover fluctuating velocity fields with 70%–80% accuracy in the along-beam direction and 60%–70% accuracy in the cross-beam direction. Large-scale convective roll structures are found in the vicinity of the downtown airport and parks. Vortical structures are identified near the business district. Strong up- and downdrafts are also found above a cluster of restaurants.


2011 ◽  
Vol 682 ◽  
pp. 617-651 ◽  
Author(s):  
J. KLEWICKI ◽  
R. EBNER ◽  
X. WU

The dynamical mechanisms underlying the redistribution of mean momentum and vorticity are explored for transitional two-dimensional boundary-layer flow at nominally zero pressure gradient. The analyses primarily employ the direct numerical simulation database of Wu & Moin (J. Fluid Mech., vol. 630, 2009, p. 5), but are supplemented with verifications utilizing subsequent similar simulations. The transitional regime is taken to include both an instability stage, which effectively generates a finite Reynolds stress profile, −ρuv(y), and a nonlinear development stage, which progresses until the terms in the mean momentum equation attain the magnitude ordering of the four-layer structure revealed by Wei et al. (J. Fluid Mech., vol. 522, 2005, p. 303). Self-consistently applied criteria reveal that the third layer of this structure forms first, followed by layers IV and then II and I. For the present flows, the four-layer structure is estimated to be first realized at a momentum thickness Reynolds number Rθ = U∞ θ/ν ≃ 780. The first-principles-based theory of Fife et al. (J. Disc. Cont. Dyn. Syst. A, vol. 24, 2009, p. 781) is used to describe the mean dynamics in the laminar, transitional and four-layer regimes. As in channel flow, the transitional regime is marked by a non-negligible influence of all three terms in the mean momentum equation at essentially all positions in the boundary layer. During the transitional regime, the action of the Reynolds stress gradient rearranges the mean viscous force and mean advection profiles. This culminates with the segregation of forces characteristic of the four-layer regime. Empirical and theoretical evidence suggests that the formation of the four-layer structure also underlies the emergence of the mean dynamical properties characteristic of the high-Reynolds-number flow. These pertain to why and where the mean velocity profile increasingly exhibits logarithmic behaviour, and how and why the Reynolds stress distribution develops such that the inner normalized position of its peak value, ym+, exhibits a Reynolds number dependence according to $y_m^+ {\,\simeq\,} 1.9 \sqrt{\delta^+}$.


Author(s):  
Joe Klewicki ◽  
Paul Fife ◽  
Tie Wei ◽  
Pat McMurtry

Recent studies by the present authors have empirically and analytically explored the properties and scaling behaviours of the Reynolds averaged momentum equation as applied to wall-bounded flows. The results from these efforts have yielded new perspectives regarding mean flow structure and dynamics, and thus provide a context for describing flow physics. A physical model of the turbulent boundary layer is constructed such that it is consonant with the dynamical structure of the mean momentum balance, while embracing independent experimental results relating, for example, to the statistical properties of the vorticity field and the coherent motions known to exist. For comparison, the prevalent, well-established, physical model of the boundary layer is briefly reviewed. The differences and similarities between the present and the established models are clarified and their implications discussed.


2019 ◽  
Vol 871 ◽  
pp. 377-400 ◽  
Author(s):  
R. Baidya ◽  
W. J. Baars ◽  
S. Zimmerman ◽  
M. Samie ◽  
R. J. Hearst ◽  
...  

Streamwise velocity and wall-shear stress are acquired simultaneously with a hot-wire and an array of azimuthal/spanwise-spaced skin friction sensors in large-scale pipe and boundary layer flow facilities at high Reynolds numbers. These allow for a correlation analysis on a per-scale basis between the velocity and reference skin friction signals to reveal which velocity-based turbulent motions are stochastically coherent with turbulent skin friction. In the logarithmic region, the wall-attached structures in both the pipe and boundary layers show evidence of self-similarity, and the range of scales over which the self-similarity is observed decreases with an increasing azimuthal/spanwise offset between the velocity and the reference skin friction signals. The present empirical observations support the existence of a self-similar range of wall-attached turbulence, which in turn are used to extend the model of Baarset al.(J. Fluid Mech., vol. 823, p. R2) to include the azimuthal/spanwise trends. Furthermore, the region where the self-similarity is observed correspond with the wall height where the mean momentum equation formally admits a self-similar invariant form, and simultaneously where the mean and variance profiles of the streamwise velocity exhibit logarithmic dependence. The experimental observations suggest that the self-similar wall-attached structures follow an aspect ratio of$7:1:1$in the streamwise, spanwise and wall-normal directions, respectively.


2011 ◽  
Vol 688 ◽  
pp. 591-601 ◽  
Author(s):  
James H. J. Buchholz ◽  
Melissa A. Green ◽  
Alexander J. Smits

AbstractA new scaling parameter is developed for the circulation shed by a rigid, rectangular panel pitching periodically about its leading edge. This parameter is the product of a kinematic and a geometric component. The kinematic component describes the relationship between the mean vorticity flux from the panel surface and the panel motion. The geometric component depends on the ratio of pitching amplitude to the span of the panel. The kinematic component is developed based on the connection between the surface pressure distribution and the resulting surface vorticity flux, which are supported in a stroke-averaged sense by pressure measurements on the surface of the panel. The parameter gives a robust scaling for the total spanwise circulation shed in a half-cycle by the panel. It provides a useful predictive tool, in that it can be either complementary to the formation number or provide an alternative scaling parameter when vortex saturation and pinch-off do not occur.


2005 ◽  
Vol 62 (8) ◽  
pp. 2662-2673 ◽  
Author(s):  
Ian Morrison ◽  
Steven Businger ◽  
Frank Marks ◽  
Peter Dodge ◽  
Joost A. Businger

Abstract Doppler velocity data from Weather Surveillance Radar-1988 Doppler (WSR-88D) radars during four hurricane landfalls are analyzed to investigate the presence of organized vortices in the hurricane boundary layer (HBL). The wavelength, depth, magnitude, and track of velocity anomalies were compiled through analysis of Doppler velocity data. The analysis reveals alternating bands of enhanced and reduced azimuthal winds closely aligned with the mean wind direction. Resulting statistics provide compelling evidence for the presence of organized secondary circulations or boundary layer rolls across significant areas during four hurricane landfalls. The results confirm previous observations of the presence of rolls in the HBL. A potential limitation of the study presented here is the resolution of the WSR-88D data. In particular, analysis of higher-resolution data (e.g., from the Doppler on Wheels) is needed to confirm that data aliasing has not unduly impacted the statistics reported here. Momentum fluxes associated with the secondary circulations are estimated using the covariance between the horizontal and vertical components of the wind fluctuations in rolls, with resulting fluxes 2–3 times greater than estimated by parameterizations in numerical weather prediction models. The observational analysis presented here, showing a prevalence of roll vortices in the HBL, has significant implications for the vertical transport of energy in hurricanes, for the character of wind damage, and for improvements in numerical simulations of hurricanes.


2018 ◽  
Vol 858 ◽  
pp. 609-633 ◽  
Author(s):  
Juan Carlos Cuevas Bautista ◽  
Alireza Ebadi ◽  
Christopher M. White ◽  
Gregory P. Chini ◽  
Joseph C. Klewicki

Recent studies reveal that at large friction Reynolds number $\unicode[STIX]{x1D6FF}^{+}$ the inertially dominated region of the turbulent boundary layer is composed of large-scale zones of nearly uniform momentum segregated by narrow fissures of concentrated vorticity. Experiments show that, when scaled by the boundary-layer thickness, the fissure thickness is $\mathit{O}(1/\sqrt{\unicode[STIX]{x1D6FF}^{+}})$, while the dimensional jump in streamwise velocity across each fissure scales in proportion to the friction velocity $u_{\unicode[STIX]{x1D70F}}$. A simple model that exploits these essential elements of the turbulent boundary-layer structure at large $\unicode[STIX]{x1D6FF}^{+}$ is developed. First, a master wall-normal profile of streamwise velocity is constructed by placing a discrete number of fissures across the boundary layer. The number of fissures and their wall-normal locations follow scalings informed by analysis of the mean momentum equation. The fissures are then randomly displaced in the wall-normal direction, exchanging momentum as they move, to create an instantaneous velocity profile. This process is repeated to generate ensembles of streamwise velocity profiles from which statistical moments are computed. The modelled statistical profiles are shown to agree remarkably well with those acquired from direct numerical simulations of turbulent channel flow at large $\unicode[STIX]{x1D6FF}^{+}$. In particular, the model robustly reproduces the empirically observed sub-Gaussian behaviour for the skewness and kurtosis profiles over a large range of input parameters.


2013 ◽  
Vol 729 ◽  
pp. 702-731 ◽  
Author(s):  
A. I. Ruban ◽  
M. A. Kravtsova

AbstractIn this paper we study the three-dimensional perturbations produced in a hypersonic boundary layer by a small wall roughness. The flow analysis is performed under the assumption that the Reynolds number, $R{e}_{0} = {\rho }_{\infty } {V}_{\infty } L/ {\mu }_{0} $, and Mach number, ${M}_{\infty } = {V}_{\infty } / {a}_{\infty } $, are large, but the hypersonic interaction parameter, $\chi = { M}_{\infty }^{2} R{ e}_{0}^{- 1/ 2} $, is small. Here ${V}_{\infty } $, ${\rho }_{\infty } $ and ${a}_{\infty } $ are the flow velocity, gas density and speed of sound in the free stream, ${\mu }_{0} $ is the dynamic viscosity coefficient at the ‘stagnation temperature’, and $L$ is the characteristic distance the boundary layer develops along the body surface before encountering a roughness. We choose the longitudinal and spanwise dimensions of the roughness to be $O({\chi }^{3/ 4} )$ quantities. In this case the flow field around the roughness may be described in the framework of the hypersonic viscous–inviscid interaction theory, also known as the triple-deck model. Our main interest in this paper is the nonlinear behaviour of the perturbations. We study these by means of numerical solution of the triple-deck equations, for which purpose a modification of the ‘skewed shear’ technique suggested by Smith (United Technologies Research Center Tech. Rep. 83-46, 1983) has been used. The technique requires global iterations to adjust the viscous and inviscid parts of the flow. Convergence of such iterations is known to be a major problem in viscous–inviscid calculations. In order to achieve improved stability of the method, both the momentum equation for the viscous part of the flow, and the equations describing the interaction with the flow outside the boundary layer, are treated implicitly in this study. The calculations confirm the fact that in this sort of flow the perturbations are capable of propagating upstream in the boundary layer, resulting in a perturbation field which surrounds the roughness on all sides. We found that the perturbations decay rather fast with the distance from the roughness everywhere except in the wake behind the roughness. We found that if the height of the roughness is small, then the perturbations also decay in the wake, though much more slowly than outside the wake. However, if the roughness height exceeds some critical value, then two symmetric counter-rotating vortices form in the wake. They appear to support themselves and grow as the distance from the roughness increases.


1997 ◽  
Vol 11 (2) ◽  
pp. 164-172
Author(s):  
Yeol Lee ◽  
Sanjay Garg ◽  
Gary S. Settles

Author(s):  
D. Furey ◽  
P. Atsavapranee ◽  
K. Cipolla

Stereo Particle Image velocimetry data was collected over high aspect ratio flexible cylinders (L/a = 1.5 to 3 × 105) to evaluate the axial development of the turbulent boundary layer where the boundary layer thickness becomes significantly larger than the cylinder diameter (δ/a>>1). The flexible cylinders are approximately neutrally buoyant and have an initial length of 152 m and radii of 0.45 mm and 1.25 mm. The cylinders were towed at speeds ranging from 3.8 to 15.4 m/sec in the David Taylor Model Basin. The analysis of the SPIV data required a several step procedure to evaluate the cylinder boundary flow. First, the characterization of the flow field from the towing strut is required. This evaluation provides the residual mean velocities and turbulence levels caused by the towing hardware at each speed and axial location. These values, called tare values, are necessary for comparing to the cylinder flow results. Second, the cylinder flow fields are averaged together and the averaged tare fields are subtracted out to remove strut-induced ambient flow effects. Prior to averaging, the cylinder flow fields are shifted to collocate the cylinder within the field. Since the boundary layer develops slowly, all planes of data occurring within each 10 meter increment of the cylinder length are averaged together to produce the mean boundary layer flow. Corresponding fields from multiple runs executed using the same experimental parameters are also averaged. This flow is analyzed to evaluate the level of axisymmetry in the data and determine if small changes in cylinder angle affect the mean flow development. With axisymmetry verified, the boundary flow is further averaged azimuthally around the cylinder to produce mean boundary layer profiles. Finally, the fluctuating velocity levels are evaluated for the flow with the cylinder and compared to the fluctuating velocity levels in the tare data. This paper will first discuss the data analysis techniques for the tare data and the averaging methods implemented. Second, the data analysis considerations will be presented for the cylinder data and the averaging and cylinder tracking techniques. These results are used to extract relevant boundary layer parameters including δ, δ* and θ. Combining these results with wall shear and momentum thickness values extracted from averaged cylinder drag data, the boundary layer can be well characterized.


Sign in / Sign up

Export Citation Format

Share Document