Effect of multiple thermal cycles on metallurgical and mechanical properties during multi-pass gas metal arc welding of Al 5083 alloy

2017 ◽  
Vol 93 (9-12) ◽  
pp. 3799-3811 ◽  
Author(s):  
Zhao Jiang ◽  
Xueming Hua ◽  
Lijin Huang ◽  
Dongsheng Wu ◽  
Fang Li
Author(s):  
Aditya Dekhane ◽  
Alex Wang ◽  
Yong-Yi Wang ◽  
Marie Quintana

The mechanical properties of welds are governed by the final microstructure that develops as an interaction between the chemical composition and cooling rates produced by welding thermal cycles. For welds in modern microalloyed thermomechanically controlled processed (TMCP) pipeline steels, the microstructure and mechanical properties can be extremely sensitive to cooling rates. The development and qualification of welding procedures to achieve targeted mechanical properties is often an iterative process. Accurate knowledge of welding thermal cycles and cooling rates as a function of welding parameters is valuable for optimization of welding process development. This paper covers the development, validation, and application of a girth welding thermal analysis tool. The core of the tool is a numerical model that has a two-dimensional, axi-symmetrical finite element procedure to simulate the transient heat transfer processes both in the weld metal and the heat affected zone (HAZ). The tool takes welding parameters, pipe and bevel geometry, and thermal properties as inputs and predicts thermal cycles and cooling rates in weld metal and HAZ. The comparison of thermal cycles between experimental measurements and the model predictions show the tool was robust and accurate. This tool is particularly effective in understanding the thermal history and resulting microstructure and mechanical properties of welds produced with high-productivity gas metal arc welding (GMAW), such as mechanized dual-torch pulsed gas metal arc welding (DT GMAW-P). The tool was used in optimization of development and qualification of welding procedures of a DT GMAW-P process under a tight time schedule. The actual welds were fabricated according to the optimized welding procedures followed by the mechanical testing of welds. Good agreement was found between the predicted tensile properties and those from experimental tests. The welding procedures were qualified within the tight time schedule by avoiding iterative trials, and reducing the cost associated with the making of trial welds and mechanical testing by approximately 50%. This tool has also been applied in the application of essential welding variables methodology (EWVM) for X80 and X70 linepipe steels [1, 2]. Future applications of the tools include the revamp of the approach to essential variables in welding procedure qualification. In particular, the parameters affecting cooling rates may be “bundled” together towards the one critical factor affecting weld properties, i.e., cooling rate. The individual parameters may be varied beyond the limits in the current codes and standards as long as their combined effects make the cooling rate stay within a narrow band. It is expected that the same framework of approaches to GMAW processes can be extended other welding processes, such as FCAW and SMAW.


Author(s):  
Emre Korkmaz ◽  
Cemal Meran

In this study, the effect of gas metal arc welding on the mechanical and microstructure properties of hot-rolled XPF800 steel newly produced by TATA Steel has been investigated. This steel finds its role in the automotive industry as chassis and seating applications. The microstructure transformation during gas metal arc welding has been analyzed using scanning electron microscope, optical microscope, and energy dispersive X-ray spectrometry. Tensile, Charpy impact, and microhardness tests have been implemented to determine the mechanical properties of welded samples. Acceptable welded joints have been obtained using heat input in the range of 0.28–0.46 kJ/mm. It has been found that the base metal hardness of the welded sample is 320 HV0.1. On account of the heat-affected zone softening, the intercritical heat-affected zone hardness values have diminished ∼20% compared to base metal.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2671 ◽  
Author(s):  
Maximilian Gierth ◽  
Philipp Henckell ◽  
Yarop Ali ◽  
Jonas Scholl ◽  
Jean Pierre Bergmann

Large-scale aluminum parts are used in aerospace and automotive industries, due to excellent strength, light weight, and the good corrosion resistance of the material. Additive manufacturing processes enable both cost and time savings in the context of component manufacturing. Thereby, wire arc additive manufacturing (WAAM) is particularly suitable for the production of large volume parts due to deposition rates in the range of kilograms per hour. Challenges during the manufacturing process of aluminum alloys, such as porosity or poor mechanical properties, can be overcome by using arc technologies with adaptable energy input. In this study, WAAM of AlMg5Mn alloy was systematically investigated by using the gas metal arc welding (GMAW) process. Herein, correlations between the energy input and the resulting temperature–time-regimes show the effect on resulting microstructure, weld seam irregularities and the mechanical properties of additively manufactured aluminum parts. Therefore, multilayer walls were built layer wise using the cold metal transfer (CMT) process including conventional CMT, CMT advanced and CMT pulse advanced arc modes. These processing strategies were analyzed by means of energy input, whereby the geometrical features of the layers could be controlled as well as the porosity to area portion to below 1% in the WAAM parts. Furthermore, the investigations show the that mechanical properties like tensile strength and material hardness can be adapted throughout the energy input per unit length significantly.


2016 ◽  
Vol 705 ◽  
pp. 250-254 ◽  
Author(s):  
Yustiasih Purwaningrum ◽  
Triyono ◽  
M. Wirawan Pu ◽  
Fandi Alfarizi

The aimed of this research is to determine the feasibility and effect of the mixture of the shielding gas in the physical and mechanical properties. Low carbon steel LR grade A in a thickness 12 mm were joined in butt joint types using GMAW (Gas Metal Arc Welding) with groove’s gap 5 mm and groove angle’s 400 with variation of shielding gas composition. The composition of shielding gas that used were 100% Ar, 100 % CO2 and 50% Ar + 50 % CO2. The measured of mechanical properties with regard to strength, hardness and toughness using, tensile test, bending test, Vickers hardness Test, and Charpy impact test respectively. The physical properties examined with optical microscope. Results show that tensile strength of welding metals are higher than raw materials. Welds metal with mixing Ar + CO shielding gas has the highest tensile strength. Hardness of weld metals with the shielding gas 100% Ar, 100 % CO2 and 50% Ar + 50 % CO2 are 244.9; 209.4; and 209.4 VHN respectively. The temperature of Charpy test was varied to find the transition temperature of the materials. The temperature that used were –60°C, -40°C, -20°C, 0°C, 20°C , and room temperature. Weld metals with various shielding gas have similar trends of toughness flux that was corellated with the microstructure of weld .


2010 ◽  
Vol 654-656 ◽  
pp. 2560-2563 ◽  
Author(s):  
Kalenda Mutombo ◽  
Madeleine du Toit

Semi-automatic and automatic pulsed gas metal arc welding (GMAW) of aluminium alloy 5083 with ER5356 filler wire causes considerable softening in the weld. The tensile strength of dressed automatic welds approaches that of the base metal, but the stress concentration caused by the weld toe in undressed semi-automatic welds reduced the tensile strength significantly. Fully automatic welds displayed improved fatigue properties compared to semi-automatic welds.


Sign in / Sign up

Export Citation Format

Share Document