Optimization of surface roughness on slitting knives by titanium dioxide nano particles as an additive in grinding lubricant

2018 ◽  
Vol 96 (9-12) ◽  
pp. 4111-4121 ◽  
Author(s):  
Gilberto E. García ◽  
Federico Trigos ◽  
Demófilo Maldonado-Cortés ◽  
Laura Peña-Parás
Author(s):  
T. R. Davydova ◽  
А. I. Shaikhaliev ◽  
D. A. Usatov ◽  
G. A. Gasanov ◽  
R. S. Korgoloev

The aim of this study was to study the effect of surface branching of titanium endoprostheses on the efficiency of fibrointegration. The object of the study was samples of titanium alloy Ti6Al4V in the form of disks with a diameter of 5 mm and a thickness of 1 mm with various surface treatments: 1) samples with a rough surface after sandblasting; 2) samples with a rough surface after sandblasting with a bioactive coating of titanium dioxide TiO2 with anatase structure. The study of surface roughness was carried out by profilometry. Evaluation of the spreading and proliferation of cells on the surface of test samples, as well as evaluation of the effectiveness of fibrointegration was carried out according to standard methods using scanning electron microscopy. During the experiments, mesinchymal stem cells were sown on test samples and the test samples were introduced into the soft tissues of experimental animals. Based on the results obtained, it was concluded that the technology of forming rough surfaces by sandblasting does not provide high uniformity and reproducibility in the nanometer range and, apparently, another method for obtaining a rough surface should be chosen. The application of a bioactive coating of titanium dioxide TiO2 with the anatase structure to the surface of titanium endoprostheses increases the efficiency of fibrointegration, however, primarily the fibrointegration of titanium endoprostheses depends on their surface roughness, which determines the concentration of cell structures, the intensity of their adhesion and the ability to fibrointegrative process.


2019 ◽  
Vol 969 ◽  
pp. 421-426
Author(s):  
G. Jayabalaji ◽  
P. Shanmughasundaram

In this present investigation titanium dioxide (TiO2) nano-fluid was blended with aphanizomenon flos (AF) biodiesel (20%)-diesel (80%) blend. Different percentages of TiO2 such as 5%, 10%, and 15%, was added with AF-D (aphanizomenon flos-diesel) blends. The blends are named as AFD-5TiO2, AFD-10TiO2, and AFD-15TiO2. The performance and emission parameters of a single cylinder CI engine fueled with AFD-TiO2 blends were experimentally investigated. The results reveal that, with the use of TiO2 nano particles, AFD-10TiO2 blend gave optimum results. BSFC decreased by about 5% and BTE increased by about 2% with the addition of TiO2 nano-particle as a catalyst. The tailpipe emissions such as CO, HC, smoke reduced drastically, but the NO emission increased, with the use of TiO2 nano-particles.


NanoEthics ◽  
2010 ◽  
Vol 4 (2) ◽  
pp. 103-113 ◽  
Author(s):  
Johannes F. Jacobs ◽  
Ibo van de Poel ◽  
Patricia Osseweijer

2018 ◽  
Vol 39 (3) ◽  
pp. 98-102
Author(s):  
Pan Yongqiang ◽  
Yang Chen

2013 ◽  
Vol 667 ◽  
pp. 452-457 ◽  
Author(s):  
N.A.M. Asib ◽  
Mohamed Zahidi Musa ◽  
Saifollah Abdullah ◽  
Mohamad Rusop

Titanium dioxide (TiO2) nanostructures were deposited on glass substrate by Radio Frequency (RF) magnetron sputtering. The samples deposited at various sputtering pressures and annealed at 723 K, were characterized using Atomic Force Microscope (AFM) to observe the surface morphology and topology, roughness properties and cross-sectional of TiO2 nanostructures, Field Emission Scanning Electrons Microscope (FESEM) to observe the particle sizes of TiO2 nanostructures and UV-vis spectroscopy to record the UV-vis transmission spectra. The aim of this paper is to determine which parameter of sputtering pressures influence the optimization of TiO2 nanostructures. AFM images show that the surface roughness of the samples decreases as the working pressures of sputtering increases. From FESEM images, it can be deduced that the higher the sputtering pressure, the smaller the particle size is. All the samples are highly transmittance with an average transmittance higher than 80% in the visible region as recorded by UV-vis transmission spectra. The relatively high transmittance of the sample indicates its low surface roughness and good homogeneity. For optimum TiO2 nanostructures deposited at various RF pressures it has the lowest surface roughness and the smallest TiO2 size particles with the indirect optical band gap of 3.41 eV.


2017 ◽  
Vol 9 (24) ◽  
pp. 3626-3635 ◽  
Author(s):  
Florian Dutschke ◽  
Johanna Irrgeher ◽  
Daniel Pröfrock

A novel, optimized and validated extraction method for engineered TiO2 nano-particles from environmental samples prior to SdFFF-MALS-ICP-MS/MS analysis is presented.


Sign in / Sign up

Export Citation Format

Share Document