Effect of Sputtering Pressure on Optimization of Titanium Dioxide Nanostructures Prepared by RF Magnetron Sputtering

2013 ◽  
Vol 667 ◽  
pp. 452-457 ◽  
Author(s):  
N.A.M. Asib ◽  
Mohamed Zahidi Musa ◽  
Saifollah Abdullah ◽  
Mohamad Rusop

Titanium dioxide (TiO2) nanostructures were deposited on glass substrate by Radio Frequency (RF) magnetron sputtering. The samples deposited at various sputtering pressures and annealed at 723 K, were characterized using Atomic Force Microscope (AFM) to observe the surface morphology and topology, roughness properties and cross-sectional of TiO2 nanostructures, Field Emission Scanning Electrons Microscope (FESEM) to observe the particle sizes of TiO2 nanostructures and UV-vis spectroscopy to record the UV-vis transmission spectra. The aim of this paper is to determine which parameter of sputtering pressures influence the optimization of TiO2 nanostructures. AFM images show that the surface roughness of the samples decreases as the working pressures of sputtering increases. From FESEM images, it can be deduced that the higher the sputtering pressure, the smaller the particle size is. All the samples are highly transmittance with an average transmittance higher than 80% in the visible region as recorded by UV-vis transmission spectra. The relatively high transmittance of the sample indicates its low surface roughness and good homogeneity. For optimum TiO2 nanostructures deposited at various RF pressures it has the lowest surface roughness and the smallest TiO2 size particles with the indirect optical band gap of 3.41 eV.

2013 ◽  
Vol 667 ◽  
pp. 104-109 ◽  
Author(s):  
N.A.M. Asib ◽  
Mohamed Zahidi Musa ◽  
Saifollah Abdullah ◽  
Mohamad Rusop

Optimization of titanium dioxide (TiO2) nanostructures deposited on glass substrate by Radio Frequency (RF) magnetron sputtering has been studied. The aim of this paper is to determine which parameter of RF powers influence the optimization of TiO2 nanostructures. The surface morphology and topology, roughness properties and cross-sectional of TiO2 nanostructures were observed by Atomic Force Microscope (AFM). The particle size of TiO2 nanostructures were observed by Field Emission Scanning Electrons Microscope (FESEM) and the UV-vis transmission spectra were recorded using UV-vis spectroscopy. The lowest surface roughness has the smallest average TiO2 size particle with indirect optical band gap of 3.39 eV for optimum TiO2 nanostructures deposited at varies RF power.


2013 ◽  
Vol 832 ◽  
pp. 276-280
Author(s):  
S. Najwa ◽  
A. Shuhaimi ◽  
N. Ameera ◽  
K.M. Hakim ◽  
M. Sobri ◽  
...  

In the present study, ITO nanocolumn was successfully deposited onto a glass substrate by RF magnetron sputtering. The effect of deposition pressure was investigated. X-ray diffraction analysis indicates that the intensity of the (400) peak orientation is highest at sputtering pressure of 5 mTorr. The results from UV-visible (UV-vis) spectroscopy revealed that the optical transmittance above 80 % was obtained from the all samples in the visible range of 400-800 nm. The larger grain size was observed from the top view of field emission scanning electron microscopy (FESEM) image as the sputtering pressure was increase. Dense nanocolumn arrays were obtained from the sample deposited at sputtering pressure of 5 mTorr. The surface roughness were decreased at high sputtering pressure of 10 mTorr was observed from atomic force microscopy (AFM) surface morphology. The electrical properties were obtained using standard two-point probe measurements. The lowest electrical resistivity was determined from the sample that prepared at sputtering pressure of 5 mTorr.


2013 ◽  
Vol 832 ◽  
pp. 607-611
Author(s):  
N.A.M. Asib ◽  
A.N. Afaah ◽  
Aadila Aziz ◽  
Mohamad Rusop ◽  
Zuraida Khusaimi

Nanocomposites of ZnO/TiO2 were fabricated by two methods. Firstly, deposition of TiO2 nanoparticles by Radio Frequency (RF) magnetron sputtering. Secondly, growths of ZnO nanostructures on the TiO2 nanoparticles by solution-immersion method with aqueous solution of Zinc nitrate hexahydrate as precursor solution and stabilizer hexamethylenetetramine (HMTA) in water as solvent. The optical properties of ZnO/TiO2 nanocomposites were examined by Ultraviolet-Visible (UV-Vis) spectroscopy, Raman spectroscopy and Photoluminescence (PL) spectroscopy. UV-vis spectra of ZnO/TiO2 nanocomposites display high absorption in the UV region and high transparency in the visible region. There is improvement in UV absorption for ZnO/TiO2 nanocomposites compared to pure TiO2 due to imperfect alignment of ZnO nanostructures. Raman analysis shows the presence of wurtzite hexagonal ZnO in all the films and presence of anatase structure of TiO2 in the film deposited at 200 W. PL spectra of the films show the emissions in the UV and visible regions. Intensity of PL emission in UV region (λ< 400 nm) is maximum for film deposited at 200 W and minimum for film deposited at 300 W resulting from the change in the surface state density. A broad peak from ~ 600-700 nm also was found for all the films.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1428
Author(s):  
Xiaowei Fan ◽  
Xuguo Huai ◽  
Jie Wang ◽  
Li-Chao Jing ◽  
Tao Wang ◽  
...  

Graphene film has wide applications in optoelectronic and photovoltaic devices. A novel and facile method was reported for the reduction of graphene oxide (GO) film by electron transfer and nascent hydrogen produced between aluminum (Al) film deposited by magnetron sputtering and hydrochloric acid (HCl) solution for only 5 min, significantly shorter than by other chemical reduction methods. The thickness of Al film was controlled utilizing a metal detection sensor. The effect of the thickness of Al film and the concentration of HCl solution during the reduction was explored. The optimal thickness of Al film was obtained by UV-Vis spectroscopy and electrical conductivity measurement of reduced GO film. Atomic force microscope images could show the continuous film clearly, which resulted from the overlap of GO flakes, the film had a relatively flat surface morphology, and the surface roughness reduced from 7.68 to 3.13 nm after the Al reduction. The film sheet resistance can be obviously reduced, and it reached 9.38 kΩ/sq with a high transmittance of 80% (at 550 nm). The mechanism of the GO film reduction by electron transfer and nascent hydrogen during the procedure was also proposed and analyzed.


2015 ◽  
Vol 1117 ◽  
pp. 139-142 ◽  
Author(s):  
Marius Dobromir ◽  
Radu Paul Apetrei ◽  
A.V. Rogachev ◽  
Dmitry L. Kovalenko ◽  
Dumitru Luca

Amorphous Nb-doped TiO2 thin films were deposited on (100) Si and glass substrates at room temperature by RF magnetron sputtering and a mosaic-type Nb2O5-TiO2 sputtering target. To adjust the amount of the niobium dopant in the film samples, appropriate numbers of Nb2O5 pellets were placed on the circular area of the magnetron target with intensive sputtering. By adjusting the discharge conditions and the number of niobium oxide pellets, films with dopant content varying between 0 and 16.2 at.% were prepared, as demonstrated by X-ray photoelectron spectroscopy data. The X-ray diffraction patterns of the as-deposited samples showed the lack of crystalline ordering in the samples. Surfaces roughness and energy band gap values increase with dopant concentration, as showed by atomic force microscopy and UV-Vis spectroscopy measurements.


2006 ◽  
Vol 321-323 ◽  
pp. 1336-1339
Author(s):  
Won Seok Choi ◽  
Young Park ◽  
Jin Hyo Boo ◽  
Junsin Yi ◽  
Byung You Hong

We investigated the structural and electrical properties of the 0.5% Ce-doped Ba(ZrxTi1-x)O3 (BZT) thin films with a mole fraction of x=0.2 and a thickness of 150 nm for the MLCC (Multilayer Ceramic Capacitor) application. Ce-doped BZT films were prepared on Pt/Ti/SiO2/Si substrates by a RF magnetron sputtering system as a function of Ar/O2 ratio and substrate temperature. X-ray diffraction patterns were recorded for the samples deposited with three different substrate temperatures. The thickness and the surface roughness of the films deposited with different Ar/O2 ratios were measured. The oxygen gas, which was introduced during the film deposition, had an influence on the growth rate and the roughness of the film. The surface roughness and dielectric constant of the Ce-doped BZT film varied with Ar to O2 ratios (5:1, 2:1, and 1:1) from 1.21 nm to 2.33 nm and 84 to 149, respectively. The Ce-doped BZT film deposited at lower temperature has small leakage current and higher breakdown voltage.


2013 ◽  
Vol 20 (05) ◽  
pp. 1350045 ◽  
Author(s):  
BO HE ◽  
LEI ZHAO ◽  
JING XU ◽  
HUAIZHONG XING ◽  
SHAOLIN XUE ◽  
...  

In this paper, we investigated indium-tin-oxide (ITO) thin films on glass substrates deposited by RF magnetron sputtering using ceramic target to find the optimal condition for fabricating optoelectronic devices. The structural, electrical and optical properties of the ITO films prepared at various substrate temperatures were investigated. The results indicate the grain size increases with substrate temperature increases. As the substrate temperature grew up, the resistivity of ITO films greatly decreased. The ITO film possesses high quality in terms of electrode functions, when substrate temperature is 480°C. The resistivity is as low as 9.42 × 10-5 Ω• cm , while the carrier concentration and mobility are as high as 3.461 × 1021 atom∕cm3 and 19.1 cm2∕V⋅s, respectively. The average transmittance of the film is about 95% in the visible region. The novel ITO/np-Silicon frame, which prepared by RF magnetron sputtering at 480°C substrate temperature, can be used not only for low-cost solar cell, but also for high quantum efficiency of UV and visible lights enhanced photodetector for various applications.


2021 ◽  
Vol 20 (1) ◽  
pp. 66-72
Author(s):  
Lidia Ghimpu ◽  
◽  
Victor Suman ◽  
Dumitru Rusnac ◽  
Tamara Potlog ◽  
...  

In this paper, a p–n thin film NiO/ZnO heterojunction for a rectifier diode and a UV photodetector is prepared and characterized. Nickel oxide (NiO) and gallium-doped zinc oxide (ZnO:Ga) thin films are grown by RF magnetron sputtering and spray pyrolysis techniques, respectively. The crystal structure of the thin films is studied by the X-ray diffraction (XRD) method. The transmittance and reflectance are studied by UV–VIS spectroscopy. The p–n electrical parameters are estimated from current–voltage characteristics. The effects of duration of thermal annealing at 450 o C on the characteristics of the NiO/ZnO:Ga device are evaluated. The non-annealed diode shows the best rectification coefficient of 10 5 at ±1 V. The p–n photodetection capability is studied under UV illumination. At a reverse bias of –3 V under 365-nm UV illumination, the device shows a current intensity of ~6.2 × 10 12 A. The observed increase in the reverse current intensity by about two orders of magnitude under a UV lamp with a spectral irradiance of 10 W m 2 m 1 indicates a promising application in UV light detection.


Sign in / Sign up

Export Citation Format

Share Document