scholarly journals Improving the surface quality of friction stir welds using reinforcement learning and Bayesian optimization

2020 ◽  
Vol 110 (11-12) ◽  
pp. 3145-3167
Author(s):  
R. Hartl ◽  
J. Hansjakob ◽  
M. F. Zaeh

Abstract Friction stir welding is an advanced joining technology that is particularly suitable for aluminum alloys. Various studies have shown a significant dependence of the welding quality on the welding speed and the rotational speed of the tool. Frequently, an inappropriate setting of these parameters can be detected through an examination of the resulting surface defects, such as increased flash formation or surface galling. In this work, two different learning-based algorithms were applied to improve the surface topography of friction stir welds. For this purpose, the surface topographies of 262 welds, which were performed as part of ten studies, were evaluated offline. The aim was to use reinforcement learning and Bayesian optimization approaches to determine the most appropriate settings for the welding speed and the rotational speed of the tool. The optimization problem was solved using reinforcement learning, specifically value iteration. However, the value iteration algorithm was not efficient, since all actions and states had to be iterated over, i.e., each possible parameter combination had to be evaluated, to find the best policy. Instead, it was better to solve the optimization problem directly using the Bayesian optimization. Two approaches were applied: both an approach in which the information from the other studies was not used and an approach in which the information from the other studies was used. On average, both the Bayesian optimization approaches found suitable welding parameters significantly faster than a random search algorithm, and the latter approach improved the result even further compared with the former approach. Future research will aim to show that optimization of the surface topography also leads to an increase in the ultimate tensile strength.

2011 ◽  
Vol 295-297 ◽  
pp. 1929-1932
Author(s):  
Yi Min Tu ◽  
Ran Feng Qiu ◽  
Hong Xin Shi ◽  
Xin Zhang ◽  
Ke Ke Zhang

In order to obtain better understanding of the friction stir weldability of the magnesium alloy and provide some foundational information for improving mechanical properties of retardant magnesium alloy joints. A retardant magnesium alloy was weld using the method of friction stir welding. The influence of welding parameters on the strength of the joint was investigated. The maximum strength of 230 MPa was obtained from the joint welded at the tool rotational speed of 1000 r/min and welding speed of 750 mm/min.


Author(s):  
Anganan K ◽  
Narendran RJ ◽  
Naveen Prabhu N ◽  
Rahul Varma R ◽  
Sivasubramaniyam R

Friction stir welding (FSW) is an innovative solid state joining technique and has been employed in industries for joining aluminum, magnesium, zinc and copper alloys. The FSW process parameters such as tool, rotational speed, welding speed, axial force, etc play major role in deciding the weld quality. A mathematical modeling was developed based on experiments to predict the tensile strength of dissimilar FSW aluminum alloys. The maximum tensile strength of 210 MPa can be obtained at the tool rotational speed of 1100 rpm, welding speed of 35mm/min and an axial load of 7 kN is the Optimum welding parameters.


2019 ◽  
Vol 28 (1) ◽  
pp. 169-185 ◽  
Author(s):  
Chinnasamy Rajendran ◽  
Kasi Srinivasan ◽  
Visvalingam Balasubramanian ◽  
Haridasu Balaji ◽  
Ponnumuthu Selvaraj

AbstractThe quality of friction stir welded joints depends upon the working parameters such as rotational speed, welding speed, shoulder diameter, tilt angle; etc. Each process parameter has a significant effect on the formation of joint strength. This investigation attempts to understand the effect of friction stir welding parameters on microstructural characteristics and tensile strength of AA2014-T6 aluminium alloy. This is performed by changing any one of the process parameters from minimum to maximum and keeping others constant. The joint fabricated from a rotational speed of 1500 rpm, welding speed of 40 mm/min, shoulder diameter of 6 mm and tilt angle of 1.5∘ yielded superior tensile properties compared to their counter joints. Due to the formation of defect-free weld, balanced material flow and uniform distribution of strengthening precipitates in the stir zone is achieved.


2018 ◽  
Vol 14 (1) ◽  
pp. 19-28
Author(s):  
Kharia Salman Hassan

The influence of pre- shot peening and welding parameters on mechanical and metallurgical properties of dissimilar and similar aluminum alloys AA2024-T3 and AA6061-T6 joints using friction stir welding have been studied. In this work, numbers of plates were equipped from sheet alloys in dimensions (150*50*6) mm then some of them were exposed to shot peening process before friction stir welding using steel ball having diameter 1.25 mm for period of 15 minutes. FSW joints were manufactured from plates at three welding speeds (28, 40, 56 mm/min) and welding speed 40mm/min was chosen at a rotating speed of 1400 rpm for welding the dissimilar pre- shot plates. Tow joints were made at rotational speed of 1000 rpm and welding speed of 40m/min from shot and without shot peening plats. Welding temperature was measured in three zones using thermocouple. Micro hardness (HV) and tensile tests were performed to evaluate the mechanical characteristic of the joints. The results show a decay in mechanical qualities when the welding speed was increased and the best result was at (28) mm/min and the opposite result was obtained when rotational speed increased and pre-shot contributed in improving of this decay at 88% of welding speed (40) mm/min and 98%  at the rotational speed of 1000 rpm.      


2018 ◽  
Vol 26 (4) ◽  
pp. 1-17
Author(s):  
Samir Ali Amin ◽  
Mohannad Yousif Hanna ◽  
Alhamza Farooq Mohamed

Bobbin friction stir welding (BFSW) is special kind of friction stir welding. This investigation aims to develop empirical models through mathematical relationships between the welding process parameters and mechanical properties of Aluminum alloy AA6061-T6 welded joint created by using bobbin tool and to find the optimum welding parameters. The welding speed range (40-200 mm/min) and rotational speed range (340-930 rpm) were utilized (as the used input factors) to find their effects on elongation, tensile strength and maximum bending force as the main responses.  These models were built using Design of Experiment (DOE) software ‘version 10’ with Response Surface Methodology (RSM) technique. The models adequacy were tested via the (ANOVA) analysis. The obtained models appeared that as the welding speed or rotational speed increases, the elongation, tensile strength and maximum bending force of the welded joint firstly rise to a maximum value and then drop. The optimum welding parameters were rotational speed (623.949 rpm) and welding speed (128.795 mm/min) with (6.33%), (204 MPa) and (6.216 KN) of elongation, tensile strength and maximum bending force, respectively. A proper harmonization was obtained between the models predicted results and the optimized ones with actual trial with 95% level of confidence.


Author(s):  
K. Anganan ◽  
R.J . Narendran ◽  
N Naveen Prabhu ◽  
R Rahul Varma ◽  
R Sivasubramaniyam

Friction stir welding (FSW) is an innovative solid state joining technique and has been employed in industries for joining aluminum, magnesium, zinc and copper alloys. The FSW process parameters such as tool, rotational speed, welding speed, axial force, etc play major role in deciding the weld quality. A mathematical modeling was developed based on experiments to predict the tensile strength of dissimilar FSW aluminum alloys. The maximum tensile strength of 210 MPa can be obtained at the tool rotational speed of 1100 rpm, welding speed of 35mm/min and an axial load of 7 kN is the Optimum welding parameters.


2009 ◽  
Vol 83-86 ◽  
pp. 1173-1181
Author(s):  
Magdy M. El Rayes ◽  
Ehab A. El-Danaf ◽  
Mahmoud S. Soliman

Friction stir welding (FSW) is a fairly recent technique that utilizes a non-consumable rotating welding tool to generate frictional heat and plastic deformation at the welding location in the continuously-fed work piece. In the present investigation this welding process is applied to join 1050 cold-rolled aluminium plates. The effects of varying the welding parameters namely welding speed [56, 90 and 140 mm/min] and tool rotational speed [850 and 1070 rpm] on the mechanical and microstructural properties were studied. Vickers micro hardness results across the weldment showed that the weld nugget hardness is dependant upon the welding speed and the tool rotational speed. Increasing the welding speed at 850 rpm reduced the hardness at the weld nugget, whereas, at 1070 rpm the weld nugget hardness merely did not change. However, the hardness achieved at 850 rpm was constantly higher than that achieved with 1070 rpm irrespective to welding speeds. In the same fashion, the yield and ultimate strengths of the joints were influenced by varying the welding parameters. Increasing the welding speed at 850 rpm reduced both strengths whereas; at 1070 rpm they were almost unchanged. Microstructural study showed that the weld region is composed of unaffected base metal and the stir zoned [weld nugget] which is characterised by a fine equiaxed grain structure. Increasing the welding speed at constant tool rotational speed has caused a slight refinement in the weld nugget's grain size, whereas, decreasing the rotational speed has also led to weld nugget grain refinement.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3244
Author(s):  
Anna Janeczek ◽  
Jacek Tomków ◽  
Dariusz Fydrych

The purpose of the following study was to compare the effect of the shape of a tool on the joint and to obtain the values of Friction Stir Welding (FSW) parameters that provide the best possible joint quality. The material used was an aluminium alloy, EN AW-3004 (AlMn1Mg1). To the authors’ best knowledge, no investigations of this alloy during FSW have been presented earlier. Five butt joints were made with a self-developed, cylindrical, and tapered threaded tool with a rotational speed of 475 rpm. In order to compare the welding parameters, two more joints with a rotational speed of 475 rpm and seven joints with a welding speed of 300 mm/min with the use of a cylindrical threaded pin were performed. This involved a visual inspection as well as a tensile strength test of the welded joints. It was observed that the value of the material outflow for the joints made with the cylindrical threaded pin was higher than it was for the joints made with the tapered threaded pin. However, welding defects in the form of voids appeared in the joints made with the tapered threaded tool. The use of the cylindrical tool resulted in higher values for about 37% of mechanical properties compared with the highest result for the tapered threaded joint. As far as the parameters were concerned, it was concluded that most of the specimens were properly joined for a rotational speed of 475 rpm. In the joints made with a welding speed of 300 mm/min, the material was not stirred properly. The best joint quality was given for a rotational speed of 475 rpm as well as a variety of welding speed values between 150 and 475 mm/min.


Author(s):  
Shubham Verma ◽  
Joy Prakash Misra ◽  
Meenu Gupta

The present study deals with the application of sequential procedure (i.e. steepest ascent) to obtain the optimum values of process parameters for conducting friction stir welding (FSW) experiments. A vertical milling machine is modified by fabricating fixture and tool ( H13 material) for performing FSW operation to join AA7039 plates. The steepest ascent technique is employed to design the experiments at different rotational speed, welding speed, and tilt angle. The ultimate tensile strength is considered as a performance characteristic for deciding the optimal levels. The mechanical and metallurgical characteristics of the joints are studied by executing tensile and microhardness tests. It is concluded from the graphical analysis of the steepest ascent technique that the optimal maximum and minimum values are 1812–1325 r/min for rotational speed, 43–26 mm/min for welding speed, and 2°–1.3° for tilt angle, respectively. Besides, optical microscope and scanning electron microscope are utilized for microstructural and fractographic analyses for a better understanding of the process.


2021 ◽  
pp. 186-186
Author(s):  
Darko Veljic ◽  
Marko Rakin ◽  
Aleksandar Sedmak ◽  
Nenad Radovic ◽  
Bojan Medjo ◽  
...  

The influence of friction stir welding (FSW) parameters on thermo-mechanical behaviour of the material during welding is analysed. An aluminium alloy is considered (Al 2024 T351), and different rotating speed and welding speed are applied. Finite element model consists of the plate (Al alloy), backing plate and welding tool, and it is formed and solved in software package Simulia Abaqus. The influence of the welding conditions on material behaviour is taken into account by application of the Johnson-Cook material model. The rotation of the tool affects the results: if increased, it contributes to an increase of friction-generated heat intensity. The other component of the generated heat, the plastic deformation of the material, is negligibly changed. When the welding speed is increased, the intensity of friction-generated heat decreases, while the heat generation due to plastic deforming increases. Combined, these two effects cause small change of the total heat generation. For the same welded joint length, the plate welded by lower speed will be heated more intensively. The changes of the heat generation influence both the temperature field and reaction force, which are also considered.


Sign in / Sign up

Export Citation Format

Share Document