scholarly journals The effect of cryogenic machining of S2 glass fibre composite on the hole form and dimensional tolerances

Author(s):  
Ugur Koklu ◽  
Sezer Morkavuk ◽  
Carol Featherston ◽  
Malik Haddad ◽  
David Sanders ◽  
...  

AbstractS2 glass fibre reinforced epoxy composites are widely used in aeronautical applications owing to their excellent strength to weight ratio. Drilling glass fibres can be cumbersome due to their abrasive nature and poor thermal conductivity. Moreover, the use of conventional coolants is not desirable due to contamination and additional costs for cleaning the machine part. An alternative is to use environmentally friendly coolants such as liquid nitrogen (LN2) which have been previously employed in machining metals and composites. The current study investigates the effect of drilling S2 glass fibre composite in a bath of LN2. The study aims to evaluate the effect of spindle speed, feed rate and the presence of cryogenic cooling on the form and dimensional tolerances of the hole (hole size, circularity, cylindricity and perpendicularity). Design of experiments and analysis of variance (ANOVA) were used to determine the contribution of the input parameters on the analysed hole quality metrics. Results indicated that drilling S2 glass fibre in a cryogenic bath increased hole size significantly beyond the nominal hole diameter. The hole circularity and cylindricity were reduced compared to holes drilled under dry condition under all cutting parameters due to enhanced thermal stability during the drilling process. The current study aims to provide the scientific and industrial communities with the necessary knowledge on whether cryogenic bath cooling strategy provides better hole quality output compared to dry drilling and other cryogenic cooling strategies which were previously reported in the open literature.

1997 ◽  
Vol 32 (1) ◽  
pp. 19-27 ◽  
Author(s):  
C W Wern ◽  
M Ramulu

The machining of an idealized glass fibre reinforced plastic (GFRP) was examined using photo-elasticity, dynamometry and optical microscopy. Cutting stresses at the glass roving and roving-matrix interface were evaluated using experimental and numerical methods. Experimentally observed isochromatics and measured forces in the orthogonal cutting of GFRP were shown to be affected by the reinforcement and its orientation. Machining stresses and machined surface damage were found to be highest when machining materials with roving oriented 45° towards the cutting edge.


Author(s):  
Gowkanapalli Ramachandra Reddy ◽  
Mala Ashok Kumar Kumar ◽  
Ati Ramesh ◽  
Mehaboob Basha ◽  
Nadadur Karthikeyan ◽  
...  

Performance of injection moulded short wollastonite fibre and chopped glass fibre reinforced hybrid epoxy composites was studied. The results showed that hybridisation of glass fibre and wollastonitewas in congruence to epoxy glass fibre composite system. Effect of fibre length, fibre orientation in matrix and analysis and fracture surface was undertaken. The mechanical properties of injection moulded, chopped glass fibre/wollastonite/epoxy hybrid composites were investigated by considering the effect of hybridisation by these two fillers. It was observed that the tensile, flexural, and impact properties of the filled epoxy were higher than those of unfilled epoxy. The effect of filler on epoxy matrix subjected to the tensile strength and modulus was studied and compared with the rule of mixture. The actual results are marginally low as compared with the values obtained by the rule of hybrid mixtures (RoHM). 


2014 ◽  
Vol 6 ◽  
pp. 1207-1216 ◽  
Author(s):  
B. Vinod Kumar ◽  
Anoop Raveendran ◽  
Victor Davis

2018 ◽  
Vol 5 (4) ◽  
pp. 603-613
Author(s):  
M. Rajanish ◽  
◽  
N. V. Nanjundaradhya ◽  
Ramesh S. Sharma ◽  
H. K. Shivananda ◽  
...  

2014 ◽  
Vol 567 ◽  
pp. 387-392
Author(s):  
Amir Izzuddin ◽  
Ibrisam Akbar

– The usage of steel in offshore deep water area contributes to the massive load of the offshore platform which will lead to the massive operational cost. Therefore, the reduction of weight of platform is the major issue that need to be tackled properly. The great improvement in strength to weight ratio compare to steel and high resistivity to corrosion makes Glass Fibre Reinforced Polymer (GFRP) grating preferable. GFRP gratings are normally made of two types of processes which are moulded and pultruded and it is usually consists of glass fibre and bonding matrixes of vinyl ester (VE), polyester (PE), or phenolic (PHE). However there is still doubt on GFRP grating application for offshore due to no consensus guidelines for the design of GFRP grating and there are many several types of GFRP grating available to be chosen. This paper presenting the study on two types of GFRP grating strength with variation of bonding matrixes under flexural static load. A total of six specimens of GFRP grating which consist of 1 each of molded vinyl ester, molded polyester, molded phenolic, pultruded vinyl ester, pultruded polyester and pultruded phenolic were tested to failure in flexure. The main parameters concerns in this study are 1) max load vs. mid-span deflection and 2) failure mode of the specimens.


2019 ◽  
Vol 33 (12) ◽  
pp. 1603-1628
Author(s):  
Sarah Mosey ◽  
Feras Korkees ◽  
Andrew Rees ◽  
Gethin Llewelyn

Due to the increasing demands on automotive components, manufacturers are relying on injection moulding components from fibre-reinforced polymers in an attempt to increase strength to weight ratio. The use of reinforcing fibres in injection moulded components has led to component failures whereby the material strength is hampered through the formation of weldlines which are also a problem for unreinforced plastics. In this study, an industrial demonstrator component has the injection locations verified through a combination of fibre orientation tensor simulation and optical microscopy analysis of key locations on the component. Furthermore, the automotive component manufactured from 30% glass fibre–reinforced polyamide 6-6 is simulated and optimized through a Taguchi parametric study. A comparison is made between the component, as it is currently manufactured, and the optimum processing parameters determined by the study. It was found that the component can be manufactured with roughly 7.5% fewer weldlines and with a mould fill time 132 ms quicker than the current manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document