Enhancing the ductile machinability of single-crystal silicon by laser-assisted diamond cutting

Author(s):  
Jinyang Ke ◽  
Xiao Chen ◽  
Changlin Liu ◽  
Jianguo Zhang ◽  
Hui Yang ◽  
...  
Author(s):  
Jinyang Ke ◽  
Xiao Chen ◽  
Jianguo Zhang ◽  
Changlin Liu ◽  
Guoqing Xu ◽  
...  

Abstract Laser-assisted diamond cutting is a promising process for machining hard and brittle materials. A deep knowledge of material removal mechanism and attainable surface integrity are crucial to the development of this new technique. This paper focuses on the application of laser-assisted diamond cutting to single crystal silicon to investigate key characteristics of this process. The influence of laser power on the ductile machinability of single crystal silicon, in terms of the critical depth of cut for ductile-brittle transition in laser-assisted diamond cutting, is investigated quantitatively using a plunge-cut method. The experimental results reveal that this process can enhance the silicon’s ductility and machinability. The critical depth of cut has been increased by up to 330% with laser assistance, and its degree generally increases with the increase of laser power. The cross-sectional transmission electron microscope observation results indicate that laser-assisted diamond cutting is able to realize the subsurface damage free processing of single crystal silicon. In order to verify the ability of the laser-assisted diamond cutting to improve the surface quality, the face turning tests are also carried out. A significant improvement of surface quality has been obtained by laser-assisted diamond cutting: Sz (maximum height) has been reduced by 85% and Sa (arithmetical mean height) has been reduced by 45%.


2012 ◽  
Vol 523-524 ◽  
pp. 81-86 ◽  
Author(s):  
Yuya Kobaru ◽  
Eiji Kondo ◽  
Ryuichi Iwamoto

A lot of studies on the ultra-precision cutting of single crystal silicon have been reported and they used the single crystal diamond cutting tools having the sharp cutting edge. However, the diamond cutting tools having small chamfer at the cutting edge are usually used in practical machining shops. In addition, studies on the relationship between the tool wear and the machined surface have been reported little although the relationship is important in practical applications. In this study, ultra-precision cutting of single crystal silicon, using cutting fluids, feed rate, and depth of cut as experimental parameters, were carried out by using the single crystal diamond cutting tools having small chamfer and large nose radius, and effects of the cutting fluids, the feed rate, and the depth of cut on the machining accuracy and tool wear were studied. As a result, the optimum cutting conditions was obtained as follows: the cutting fluid was kerosene, the feed rate was 2.0μm/rev, and the depth of cut was 1.0μm.


Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Sign in / Sign up

Export Citation Format

Share Document