scholarly journals Modeling of cutting forces in 1-D and 2-D ultrasonic vibration-assisted milling of Ti-6Al-4V

Author(s):  
Philipp M. Rinck ◽  
Alpcan Gueray ◽  
Michael F. Zaeh

AbstractTo meet the modern demands for lightweight construction and energy efficiency, hard-to-machine materials such as ceramics, superalloys, and fiber-reinforced plastics are being used progressively. These materials can only be machined with great effort using conventional machining processes due to the high cutting forces, poor surface qualities, and the associated tool wear. Vibration-assisted machining has already proven to be an adequate solution in order to achieve extended tool lives, better surface qualities, and reduced cutting forces. This paper presents an analytical force model for longitudinal-torsional vibration-assisted milling (LT-VAM), which can predict cutting forces under intermittent and non-intermittent cutting conditions. Under intermittent cutting conditions, the relative contact ratio between the rake face and the sliding chip is utilized for modelling the shearing forces. Ploughing forces and shearing forces under non-intermittent cutting conditions are calculated by using an extended macroscopic friction reduction model, which can predict the reduced frictional forces under parallel and perpendicular vibration superimposition. The force model was implemented in MATLAB and can predict cutting forces without using any experimental vibration-assisted milling (VAM) data input.

2021 ◽  
Author(s):  
Philipp Rinck ◽  
Alpcan Gueray ◽  
Michael F. Zaeh

Abstract To meet the modern demands for lightweight construction and energy efficiency, hard-to-machine materials such as ceramics, superalloys and fiber-reinforced plastics are being used progressively. These materials can only be machined with great effort using conventional machining processes due to the high cutting forces, poor surface qualities, and the associated tool wear. Vibration-assisted machining has already proven to be an adequate solution in order to achieve extended tool lives, better surface qualities and reduced cutting forces. This paper presents an analytical force model for longitudinal-torsional vibration-assisted milling (LT-VAM), which can predict cutting forces under intermittent and non-intermittent cutting conditions. Under intermittent cutting conditions, the relative contact ratio between the rake face and the sliding chip is utilized for modelling the shearing forces. Ploughing forces and shearing forces under non-intermittent cutting conditions are calculated by using an extended macroscopic friction reduction model, which can predict the reduced frictional forces under parallel and perpendicular vibration superimposition. The force model was implemented in MATLAB and can predict cutting forces without using any experimental vibration-assisted milling (VAM) data input.


Author(s):  
Han Ul Lee ◽  
Dong-Woo Cho ◽  
Kornel F. Ehmann

Complex three-dimensional miniature components are needed in a wide range of industrial applications from aerospace to biomedicine. Such products can be effectively produced by micro-end-milling processes that are capable of accurately producing high aspect ratio features and parts. This paper presents a mechanistic cutting force model for the precise prediction of the cutting forces in micro-end-milling under various cutting conditions. In order to account for the actual physical phenomena at the edge of the tool, the components of the cutting force vector are determined based on the newly introduced concept of the partial effective rake angle. The proposed model also uses instantaneous cutting force coefficients that are independent of the end-milling cutting conditions. These cutting force coefficients, determined from measured cutting forces, reflect the influence of the majority of cutting mechanisms involved in micro-end-milling including the minimum chip-thickness effect. The comparison of the predicted and measured cutting forces has shown that the proposed method provides very accurate results.


2014 ◽  
Vol 887-888 ◽  
pp. 1191-1194 ◽  
Author(s):  
Chang Yi Liu

Thermal energy sources have been applied for softening the difficult-to-machine material when it is combined with conventional machining processes. Cutting forces has been reduced during the process. To investigate the plastic deformation property of workpiece materials heated by thermal sources, and its influence to the cutting forces, the analytical model of orthogonal cutting is established. The impact of cutting speed and initial temperature of the shear banding to the cutting forces are taken account of, based on adiabatic shear banding model and Johnson-Cook material constitutive law. The shear banding average shear stress failure criteria has been proposed to decide the fracture between workpiece and chip. Simulation has been carried out and compared with experimental data of laser-heat assisted titanium alloy milling, showing good agreement.


2013 ◽  
Vol 12 (01) ◽  
pp. 1-14 ◽  
Author(s):  
A. HOSSEINI ◽  
H. A. KISHAWY

Prediction of cutting forces is one of the fundamental stages in the modeling of machining processes. The costly machining tests can be replaced by virtual simulations where cutting parameters and material properties can be altered repeatedly with no cost. Broaching is one of the machining operations which is extensively used in the industry. The geometry of broaching tool varies according to the desired profile of the workpiece which can be a simple line or complicated curves. This broad range of geometries imposes complexity on the distribution of the chip load along the cutting edge. Therefore, introducing a practical force model for broaching operation can be challenging. An attempt is made in this paper to present a force model for broaching. The newly proposed force model expresses the cutting edge as a B-spline parametric curve and uses its flexibility to calculate the chip load as well as cutting forces for orthogonal and oblique broaching. Verified by previously published experimental results, the presented model has a great capability to simulate broaching cutter geometry along with cutting forces.


2010 ◽  
Vol 443 ◽  
pp. 652-656
Author(s):  
Shah Md. Mahfuzur Rahman ◽  
Jong Leng Liow

The analysis of cutting forces plays an important role in the design of machine tool systems as well as in the planning, optimization, and control of micro machining processes. Several parameters influence the cutting forces of which the friction is important in causing premature tool failure. This paper presents a force model that includes the friction force for sliding due to the contact between the tool and workpiece at the flank face. Simulation results were compared with the experimental results of Bao and Tansel [1] showing that the model can satisfactorily represent the cutting forces in two dimensional cutting.


2021 ◽  
Vol 11 (16) ◽  
pp. 7246
Author(s):  
Julius Moritz Berges ◽  
Georg Jacobs ◽  
Sebastian Stein ◽  
Jonathan Sprehe

Locally load-optimized fiber-based composites, the so-called tailored textiles (TT), offer the potential to reduce weight and cost compared to conventional fiber-reinforced plastics (FRP). However, the design of TT has a higher complexity compared to FRP. Current approaches, focusing on solving this complexity for multiple objectives (cost, weight, stiffness), require great effort and calculation time, which makes them unsuitable for serial applications. Therefore, in this paper, an approach for the efficient creation of simplified TT concept designs is presented. By combining simplified models for structural design and cost estimation, the most promising concepts, regarding the cost, weight, and stiffness of TT parts, can be identified. By performing a parameter study, the cost, weight, and stiffness optima of a sample part compared to a conventional FRP component can be determined. The cost and weight were reduced by 30% for the same stiffness. Applying this approach at an early stage of product development reduces the initial complexity of the subsequent detailed engineering design, e.g., by applying methods from the state of the art.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Fang ◽  
Ze-Min Pan ◽  
Bing Han ◽  
Shao-Hua Fei ◽  
Guan-Hua Xu ◽  
...  

Drilling carbon fiber reinforced plastics and titanium (CFRP/Ti) stacks is one of the most important activities in aircraft assembly. It is favorable to use different drilling parameters for each layer due to their dissimilar machining properties. However, large aircraft parts with changing profiles lead to variation of thickness along the profiles, which makes it challenging to adapt the cutting parameters for different materials being drilled. This paper proposes a force sensorless method based on cutting force observer for monitoring the thrust force and identifying the drilling material during the drilling process. The cutting force observer, which is the combination of an adaptive disturbance observer and friction force model, is used to estimate the thrust force. An in-process algorithm is developed to monitor the variation of the thrust force for detecting the stack interface between the CFRP and titanium materials. Robotic orbital drilling experiments have been conducted on CFRP/Ti stacks. The estimate error of the cutting force observer was less than 13%, and the stack interface was detected in 0.25 s (or 0.05 mm) before or after the tool transited it. The results show that the proposed method can successfully detect the CFRP/Ti stack interface for the cutting parameters adaptation.


2011 ◽  
Vol 328-330 ◽  
pp. 560-564
Author(s):  
Ba Sheng Ouyang ◽  
Guo Xiang Lin ◽  
Yong Hui Tang

Cutting forces and machining error in contouring of concave and convex surfaces using helical ball end mills are theoretically investigated. The cutting forces are evaluated based on the theory of oblique cutting. The machining errors resulting from the tool deflections due to these forces are evaluated at various points of the machined surface. The influence of various cutting conditions and cutting modes on machining error is investigated and discussed.


2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.


Author(s):  
Yun Chen ◽  
Huaizhong Li ◽  
Jun Wang

Titanium and its alloys are difficult to machine due to their high chemical reactivity with tool materials and low thermal conductivity. Chip segmentation caused by the thermoplastic instability is always observed in titanium machining processes, which leads to varied cutting forces and chip thickness, etc. This paper presents an analytical modelling approach for cutting forces in near-orthogonal cutting of titanium alloy Ti6Al4V. The catastrophic shear instability in the primary shear plane is assumed as a semi-static process. An analytical approach is used to evaluate chip thicknesses and forces in the near-orthogonal cutting process. The shear flow stress of the material is modelled by using the Johnson–Cook constitutive material law where the strain hardening, strain rate sensitivity and thermal softening behaviours are coupled. The thermal equations with non-uniform heat partitions along the tool–chip interface are solved by a finite difference method. The model prediction is verified with experimental data, where a good agreement in terms of the average cutting forces and chip thickness is shown. A comparison of the predicted temperatures with published data obtained by using the finite element method is also presented.


Sign in / Sign up

Export Citation Format

Share Document