scholarly journals Pressure gain combustion

Shock Waves ◽  
2021 ◽  
Author(s):  
E. J. Gutmark
Author(s):  
S. M. FROLOV ◽  
◽  
V. I. ZVEGINTSEV ◽  
V. S. AKSENOV ◽  
I. V. BILERA ◽  
...  

The term "detonability" with respect to fuel-air mixtures (FAMs) implies the ability of a reactive mixture of a given composition to support the propagation of a stationary detonation wave in various thermodynamic and gasdynamic conditions. The detonability of FAMs, on the one hand, determines their explosion hazards during storage, transportation, and use in various sectors of the economy and, on the other hand, the possibility of their practical application in advanced energy-converting devices operating on detonative pressure gain combustion.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3521 ◽  
Author(s):  
Panagiotis Stathopoulos

Conventional gas turbines are approaching their efficiency limits and performance gains are becoming increasingly difficult to achieve. Pressure Gain Combustion (PGC) has emerged as a very promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine thermodynamic cycles. Up to date, only very simplified models of open cycle gas turbines with pressure gain combustion have been considered. However, the integration of a fundamentally different combustion technology will be inherently connected with additional losses. Entropy generation in the combustion process, combustor inlet pressure loss (a central issue for pressure gain combustors), and the impact of PGC on the secondary air system (especially blade cooling) are all very important parameters that have been neglected. The current work uses the Humphrey cycle in an attempt to address all these issues in order to provide gas turbine component designers with benchmark efficiency values for individual components of gas turbines with PGC. The analysis concludes with some recommendations for the best strategy to integrate turbine expanders with PGC combustors. This is done from a purely thermodynamic point of view, again with the goal to deliver design benchmark values for a more realistic interpretation of the cycle.


Author(s):  
Philip H. Snyder ◽  
M. Razi Nalim

Renewed interest in pressure gain combustion applied as a replacement of conventional combustors within gas turbine engines creates the potential for greatly increased capability engines in the marine power market segment. A limited analysis has been conducted to estimate the degree of improvements possible in engine thermal efficiency and specific work for a type of wave rotor device utilizing these principles. The analysis considers a realistic level of component losses. The features of this innovative technology are compared with those of more common incremental improvement types of technology for the purpose of assessing potentials for initial market entry within the marine gas turbine market. Both recuperation and non-recuperation cycles are analyzed. Specific fuel consumption improvements in excess of 35% over those of a Brayton cycle are indicated. The technology exhibits the greatest percentage potential in improving efficiency for engines utilizing relatively low or moderate mechanical compression pressure ratios. Specific work increases are indicated to be of an equally dramatic magnitude. The advantages of the pressure gain combustion approach are reviewed as well as its technology development status.


2017 ◽  
Vol 1 ◽  
pp. K4MD26 ◽  
Author(s):  
Seyfettin C. Gülen

AbstractThis article evaluates the improvement in gas turbine combined cycle power plant efficiency and output via pressure gain combustion (PGC). Ideal and real cycle calculations are provided for a rigorous assessment of PGC variants (e.g., detonation and deflagration) in a realistic power plant framework with advanced heavy-duty industrial gas turbines. It is shown that PGC is the single-most potent knob available to the designers for a quantum leap in combined cycle performance.


2021 ◽  
Author(s):  
Benjamin Fietzke ◽  
Rudibert King ◽  
Jan Mihalyovics ◽  
Dieter Peitsch

Abstract Novel pressure gain combustion concepts invoke periodic flow disturbances in a gas turbine’s last compressor stator row. This contribution presents studies of mitigation efforts on the effects of these periodic disturbances on an annular compressor stator rig. The passages were equipped with pneumatic Active Flow Control (AFC) influencing the stator blade’s suction side, and a rotating throttling disc downstream of the passages inducing periodic disturbances. For steady blowing, it is shown that with increasing actuation amplitudes Cμ, the extension of a hub corner vortex deteriorating the suction side flow can be reduced, resulting in an increased static pressure rise coefficient Cp of a passage. The effects of the induced periodic disturbances could not be addressed intrinsically, by using steady blowing actuation, Considering a corrected total pressure loss coefficient ζ*, which includes the actuation effort, the stator row’s efficiency decreases with higher cμ due to the increasing costs of the actuation mass flow. Therefore, a closed-loop approach is presented to address the effects of the disturbances more specifically, thus lowering the actuation cost, i.e., mass flow. For this, a Repetitive Model Predictive Control (RMPC) was applied, taking advantage of the periodic nature of the induced disturbances. The presented RMPC formulation is restricted to a binary control domain to account for the used solenoid valves’ switching character. An efficient implementation of the optimization within the RMPC is presented, which ensures real-time capability. As a result, Cp increases in a similar magnitude but with a lower actuation mass flow of up to 66%, resulting in a much lower ζ* for similar values of cμ.


Author(s):  
Nicolai Neumann ◽  
Dieter Peitsch ◽  
Arne Berthold ◽  
Frank Haucke ◽  
Panagiotis Stathopoulos

Abstract Performance improvements of conventional gas turbines are becoming increasingly difficult and costly to achieve. Pressure Gain Combustion (PGC) has emerged as a promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine cycle. Previous cycle analyses considering turbine cooling methods have shown that the application of pressure gain combustion may require more turbine cooling air. This has a direct impact on the cycle efficiency and reduces the possible efficiency gain that can potentially be harvested from the new combustion technology. Novel cooling techniques could unlock an existing potential for a further increase in efficiency. Such a novel turbine cooling approach is the application of pulsed impingement jets inside the turbine blades. In the first part of this paper, results of pulsed impingement cooling experiments on a curved plate are presented. The potential of this novel cooling approach to increase the convective heat transfer in the inner side of turbine blades is quantified. The second part of this paper presents a gas turbine cycle analysis where the improved cooling approach is incorporated in the cooling air calculation. The effect of pulsed impingement cooling on the overall cycle efficiency is shown for both Joule and PGC cycles. In contrast to the authors’ anticipation, the results suggest that for relevant thermodynamic cycles pulsed impingement cooling increases the thermal efficiency of Joule cycles more significantly than it does in the case of PGC cycles. Thermal efficiency improvements of 1.0 p.p. for pure convective cooling and 0.5 p.p. for combined convective and film with TBC are observed for Joule cycles. But just up to 0.5 p.p. for pure convective cooling and 0.3 p.p. for combined convective and film cooling with TBC are recorded for PGC cycles.


Energy ◽  
2020 ◽  
Vol 200 ◽  
pp. 117492
Author(s):  
Panagiotis Stathopoulos ◽  
Tim Rähse ◽  
Johann Vinkeloe ◽  
Neda Djordjevic

2017 ◽  
Vol 33 (1) ◽  
pp. 112-120 ◽  
Author(s):  
Brandon K. Kan ◽  
Stephen D. Heister ◽  
Daniel E. Paxson

Author(s):  
Kurt P. Rouser ◽  
Paul I. King ◽  
Frederick R. Schauer ◽  
Rolf Sondergaard ◽  
John L. Hoke

There is longstanding government and industry interest in pressure-gain combustion for use in Brayton cycle-based engines. Theoretically, pressure-gain combustion allows heat addition with reduced entropy loss. The pulsed detonation combustor (PDC) is a device that can provide such pressure-gain combustion and possibly replace the typical steady deflagration combustor. The PDC is inherently unsteady, however, and comparisons with steady deflagration combustors must be based upon time-integrated performance variables. In this study, the radial turbine of a Garrett automotive turbocharger was coupled directly to and driven, full admission, by a hydrogen-fueled PDC fueled. Data included pulsed-cycle time histories of turbine inlet and exit temperature, pressure, velocity, mass flow, and enthalpy. The unsteady inlet flowfield showed momentary reverse flow, and thus unsteady accumulation and expulsion of mass and enthalpy within the device. The coupled turbine-driven compressor provided a time-resolved measure of turbine power. Duty cycle increased with PDC frequency. Power and cycle-average specific work increased with PDC frequency and fill fraction.


Sign in / Sign up

Export Citation Format

Share Document