The first report on Listeria monocytogenes producing siderophores and responds positively to N-acyl homoserine lactone (AHL) molecules by enhanced biofilm formation

2017 ◽  
Vol 199 (10) ◽  
pp. 1409-1415 ◽  
Author(s):  
Milind Mohan Naik ◽  
Purva Bhangui ◽  
Chinmay Bhat
2013 ◽  
Vol 825 ◽  
pp. 107-110
Author(s):  
Sören Bellenberg ◽  
Robert Barthen ◽  
Mario Vera ◽  
Nicolas Guiliani ◽  
Wolfgang Sand

A functional luxIR-type Quorum Sensing (QS) system is present in Acidithiobacillus ferrooxidans. However, cell-cell communication among various acidophilic chemolithoautotrophs growing on pyrite has not been studied in detail. These aspects are the scope of this study with emphasis on the effects exerted by the N-acyl-homoserine lactone (AHL) type signaling molecules which are produced by Acidithiobacillus ferrooxidans. Their effects on attachment and leaching efficiency by other leaching bacteria, such as Acidithiobacillus ferrivorans, Acidiferrobacter spp. SPIII/3 and Leptospirillum ferrooxidans in pure and mixed cultures growing on pyrite is shown.


2013 ◽  
Vol 76 (2) ◽  
pp. 239-247 ◽  
Author(s):  
IQBAL KABIR JAHID ◽  
NA-YOUNG LEE ◽  
ANNA KIM ◽  
SANG-DO HA

Aeromonas hydrophila recently has received increased attention because it is opportunistic and a primary human pathogen. A. hydrophila biofilm formation and its control are a major concern for food safety because biofilms are related to virulence. Therefore, we investigated biofilm formation, motility inhibition, quorum sensing, and exoprotease production of this opportunistic pathogen in response to various glucose concentrations from 0.05 to 2.5% (wt/vol). More than 0.05% glucose significantly impaired (P < 0.05) quorum sensing, biofilm formation, protease production, and swarming and swimming motility, whereas bacteria treated with 0.05% glucose had activity similar to that of the control (0% glucose). A stage shift biofilm assay revealed that the addition of glucose (2.5%) inhibited initial biofilm formation but not later stages. However, addition of quorum sensing molecules N-3-butanoyl-DL-homoserine lactone and N-3-hexanoyl homoserine lactone partially restored protease production, indicating that quorum sensing is controlled by glucose concentrations. Thus, glucose present in food or added as a preservative could regulate acyl-homoserine lactone quorum sensing molecules, which mediate biofilm formation and virulence in A. hydrophila.


2019 ◽  
Vol 13 (3) ◽  
pp. 1841-1846
Author(s):  
Sree Samanvitha K ◽  
Sanjay Kumar S ◽  
Antony V. Samrot ◽  
Raji P ◽  
Ponnaiah Paulraj ◽  
...  

Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 499 ◽  
Author(s):  
Bao Zhang ◽  
Xiyi Zhuang ◽  
Liyun Guo ◽  
Robert J. C. McLean ◽  
Weihua Chu

Quorum quenching (QQ) is a promising alternative infection-control strategy to antibiotics that controls quorum-regulated virulence without killing the pathogens. Aeromonas hydrophila is an opportunistic gram-negative pathogen living in freshwater and marine environments. A. hydrophila possesses an N-acyl homoserine lactone (AHL)-based quorum-sensing (QS) system that regulates virulence, so quorum signal-inactivation (i.e., QQ) may represent a new way to combat A. hydrophila infection. In this study, an AHL lactonase gene, aiiA was cloned from Bacillus sp. strain QSI-1 and expressed in Escherichia coli strain BL21(DE3). The A. hydrophila hexanoyl homoserine lactone (C6-HSL) QS signal molecule was degraded by AiiAQSI-1, which resulted in a decrease of bacterial swimming motility, reduction of extracellular protease and hemolysin virulence factors, and inhibited the biofilm formation of A. hydrophila YJ-1 in a microtiter assay. In cell culture studies, AiiAQSI-1 decreased the ability of A. hydrophila adherence to and internalization by Epithelioma papulosum cyprini (EPC) cells. During in vivo studies, oral administration of AiiAQSI-1 via feed supplementation attenuated A. hydrophila infection in Crucian Carp. Results from this work indicate that feed supplementation with AiiAQSI-1 protein has potential to control A. hydrophila aquaculture disease via QQ.


2017 ◽  
Vol 605-606 ◽  
pp. 1031-1038 ◽  
Author(s):  
Hongjie Sheng ◽  
Mourad Harir ◽  
Lisa A. Boughner ◽  
Xin Jiang ◽  
Philippe Schmitt-Kopplin ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (14) ◽  
pp. 11128-11139 ◽  
Author(s):  
Huizhi Hu ◽  
Junguo He ◽  
Jian Liu ◽  
Huarong Yu ◽  
Jian Tang ◽  
...  

Quorum sensing (QS) signaling has been extensively studied in granules and single species populations.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
O. Lidor ◽  
A. Al-Quntar ◽  
E. C. Pesci ◽  
D. Steinberg

Abstract Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen responsible for many human infections. LasI is an acyl-homoserine lactone synthase that produces a quorum-sensing (QS) signal that positively regulates numerous P. aeruginosa virulence determinants. The inhibition of the LasI protein is therefore an attractive drug target. In this study, a novel in silico to in vitro complementation was applied to screen thiazolidinedione-type compounds for their ability to inhibit biofilm formation at concentrations not affecting bacterial growth. The compound (z)-5-octylidenethiazolidine-2, 4-dione (TZD-C8) was a strong inhibitor of biofilm formation and chosen for further study. Structural exploration of in silico docking predicted that the compound had high affinity for the LasI activity pocket. The TZD-C8 compound was also predicted to create hydrogen bonds with residues Arg30 and Ile107. Site-directed mutagenesis (SDM) of these two sites demonstrated that TZD-C8 inhibition was abolished in the lasI double mutant PAO-R30D, I107S. In addition, in vitro swarming motility and quorum sensing signal production were affected by TZD-C 8, confirming this compound alters the cell to cell signalling circuitry. Overall, this novel inhibitor of P. aeruginosa quorum sensing shows great promise and validates our mechanistic approach to discovering inhibitors of LuxI-type acyl-homoserine lactone synthases.


2008 ◽  
Vol 75 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Ryan W. Shepherd ◽  
Steven E. Lindow

ABSTRACT Plant aerial surfaces comprise a complex habitat for microorganisms, and many plant-associated bacteria, such as the pathogen Pseudomonas syringae, exhibit density-dependent survival on leaves by utilizing quorum sensing (QS). QS is often mediated by diffusible signals called N-acyl-homoserine lactones (AHLs), and P. syringae utilizes N-3-oxo-hexanoyl-dl-homoserine lactone (3OC6HSL) to control traits influencing epiphytic fitness and virulence. The P. syringae pathovar syringae B728a genome sequence revealed two putative AHL acylases, termed HacA (Psyr_1971) and HacB (Psyr_4858), which are N-terminal nucleophile hydrolases that inactivate AHLs by cleaving their amide bonds. HacA is a secreted AHL acylase that degrades only long-chain (C ≥ 8) AHLs, while HacB is not secreted and degrades all tested AHLs. Targeted disruptions of hacA, hacB, and hacA and hacB together do not alter endogenous 3OC6HSL levels under the tested conditions. Surprisingly, targeted disruptions of hacA alone and hacA and hacB together confer complementable phenotypes that are very similar to autoaggregative phenotypes seen in other species. While AHL acylases might enable P. syringae B728a to degrade signals of competing species and block expression of their QS-dependent traits, these enzymes also play fundamental roles in biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document