Isolation and evaluation of the plant growth promoting rhizobacterium Bacillus methylotrophicus (DD-1) for growth enhancement of rice seedling

2020 ◽  
Vol 202 (8) ◽  
pp. 2169-2179
Author(s):  
Zeping Liu ◽  
Hengxu Wang ◽  
Weihui Xu ◽  
Zhigang Wang
2008 ◽  
Vol 54 (10) ◽  
pp. 861-867 ◽  
Author(s):  
Kanchalee Jetiyanon ◽  
Sakchai Wittaya-Areekul ◽  
Pinyupa Plianbangchang

The plant growth-promoting rhizobacterium Bacillus cereus RS87 was previously reported to promote plant growth in various crops in both greenhouse and field trials. To apply as a plant growth promoting agent with practical use, it is essential to ease the burden of routine preparation of a fresh suspension of strain RS87 in laboratory. The objectives of this study were to investigate the feasibility of film-coating seeds with B. cereus RS87 spores for early plant growth enhancement and to reveal the indoleacetic acid (IAA) production released from strain RS87. The experiment consisted of the following 5 treatments: nontreated seeds, water-soaked seeds, film-coated seeds, seeds soaked with vegetative cells of strain RS87, and film-coated seeds with strain RS87 spores. Three experiments were conducted separately to assess seed emergence, root length, and plant height. Results showed that both vegetative cells and spores of strain RS87 significantly promoted (P ≤ 0.05) seed emergence, root length and plant height over the control treatments. The strain RS87 also produced IAA. In conclusion, the film coating of seeds with spores of B. cereus RS87 demonstrated early plant growth enhancement as well as seeds using their vegetative cells. IAA released from strain RS87 would be one of the mechanisms for plant growth enhancement.


Vegetalika ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 512
Author(s):  
Nanda Dwi Hafri ◽  
Endang Sulistyaningsih ◽  
Arif Wibowo

Salah satu upaya penanganan penyakit moler bawang merah dilakukan melalui aplikasi Trichoderma. Aplikasi Trichoderma pada bawang merah memiliki beberapa keunggulan, yaitu mampu mensintesis hormon pertumbuhan tanaman. Terdapat jenis mikroba lain yang juga mampu meningkatkan fitohormon pada tanaman, yaitu Plant Growth Promoting Rhizobacteria (PGPR). Tujuan dari penelitian ini adalah untuk mengetahui dan menentukan isolat PGPR yang memiliki pengaruh paling baik terhadap pertumbuhan dan hasil bawang merah varietas Crok Kuning di lahan sawah. Penelitian ini menggunakan Rancangan Acak Kelompok Lengkap (RAKL) faktor tunggal dengan tiga blok sebagai ulangan. Faktor perlakuan yang digunakan adalah lima isolat PGPR, yaitu: Bp.25.7 Bacillus subtilis, BrSG.5 Bacillus amyloliquofaciens, Bp.25.2 Bacillus methylotrophicus, BrsM.4 Burkholderia cepacia, danBp.25.6 Bacillus amyloliquofaciens dengan dua kontrol, yaitu kontrol positif berupa Trichoderma dan kontrol negatif tanpa aplikasi perlakuan. Hasil penelitian menunjukkan bahwa pemberian perlakuan isolat Bp.25.2 Bacillus methylotrophicus pada bawang merah menyebabkan Laju Asimilasi Bersih (LAB) bawang merah lebih tinggi dibandingkan dengan pemberian perlakuan empat isolat PGPR lainnya maupun kontrol, tetapi sama baiknya dengan pemberian perlakuan Trichoderma. LAB yang tinggi menyebabkan Laju Pertumbuhan Tanaman (LPT) bawang merah dengan pemberian perlakuan Bp.25.2 Bacillus methylotrophicus yang lebih tinggi dibandingkan dengan BrSG.5 Bacillus amyloliquofaciens dan Bp.25.6 Bacillus amyloliquofaciens, tetapi sama baiknya dengan pemberian perlakuan dua isolat PGPR lainnya, kontrol, maupun Trichoderma. Pemberian aplikasi lima isolat PGPR sama baiknya dengan aplikasi Trichoderma dalam meningkatkan pertumbuhan tanaman bawang merah pada variabel luas permukaan daun dan bobot kering total dibandingkan kontrol. Peningkatan variabel pertumbuhan ini tidak diikuti oleh peningkatan variabel hasil dan produktivitas bawang merah tidak berbeda nyata antar perlakuan.


2019 ◽  
Vol 20 (12) ◽  
Author(s):  
Haliatur Rahma ◽  
NURBAILIS ◽  
NILA KRISTINA

Abstract. Rahma H, Nurbailis, Kristina N. 2019. Characterization and potential of plant growth-promoting rhizobacteria on rice seedling growth and the effect on Xanthomonas oryzae pv. oryzae. Biodiversitas 20: 3654-3661. Xanthomonas oryzae pv. oryzae (Xoo), a major limiting factor in rice production, and the use of resistant Xoo varieties have failed to control the bacterial pathogens as well as increased yield. It is due to the diversity in pathotypes, caused by environmental factors, the nature of resistant variety used, and gene mutation. The aims of this study were to select rhizobacterial strains with the potential of suppressing Xoo growth and promoting the growth of rice seedlings. This experiment was conducted in a completely randomized design (CRD) using seven rhizobacterial isolates selected through a dual culture test, with four replications. There were four isolates that potential in inhibiting the growth of Xoo, namely KJKB5.4, LMTSA5.4, Bacillus cereus AJ34, and Alcaligenes faecalis AJ14, with inhibition diameters greater than 11.50 mm. Rhizobacterial supernatant of 4 potential isolates has a zone of inhibition ranging from 12.25 to 24.00 mm. Four potential isolates were also able to solubilize phosphate, produce indole acetic acid (IAA) growth hormone, and siderophore, as well as enhance the growth of rice seedlings. Based on the nucleic acid sequencing of LMTSA5.4, KJKB5.4, and RK12 isolates were identified as Stenotrophomonas malthopilia strain LMG 958 (99.13%) accession NR 119220.1, Stenotrophomonas pavanii strain LMG 25348 (95.84%) accession NR 118008.1 and Ochrobactrum ciceri strain ca-34 (92.91%) accession NR115819.1.


2018 ◽  
Vol 5 (4) ◽  
pp. 182-190 ◽  
Author(s):  
Amit Kumar Pal ◽  
Arpita Chakraborty ◽  
Chandan Sengupta

Rapidly increasing worldwide industrialization has led to many environmental problems by the liberation of pollutants such as heavy metals. Day by day increasing metal contamination in soil and water can be best coped by the interaction of potential plant growth promoting rhizobacteria for plant growth. The effect of plant growth promoting rhizobacteria (PGPR) treatment on growth of chilli plant subjected to heavy metal stress was evaluated. Growth of chilli plant was examined with inoculation of two isolated PGPR (Lysinibacillus varians and Pseudomonas putida) under cadmium (30 ppm), lead (150 ppm) and the combination of heavy metal (Cd+Pb) stress condition. Among these two bacteria L. varians produced slightly better plant growth enhancement. Different growth parameters of chilli plants were reduced under heavy metal stress. Whereas, Cd and Pb tolerant PGPR inoculation, in root associated soil, enhanced plant growth development under test heavy metal contaminated soil. So, these PGPRs may easily be used as bio-fertilizers which will nullify the adverse effect of heavy metal on plant growth.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
G. Praveen Kumar ◽  
S. K. Mir Hassan Ahmed ◽  
Suseelendra Desai ◽  
E. Leo Daniel Amalraj ◽  
Abdul Rasul

Plant growth promoting rhizobacteria (PGPR) has been identified as a group of microbes that are used for plant growth enhancement and biocontrol for management of plant diseases. The inconsistency in performance of these bacteria from laboratory to field conditions is compounded due to the prevailing abiotic stresses in the field. Therefore, selection of bacterial strains with tolerance to abiotic stresses would benefit the end-user by successful establishment of the strain for showing desired effects. In this study we attempted to isolate and identify strains of Bacillus and Pseudomonas spp. with stress tolerance and proven ability to inhibit the growth of potential phytopathogenic fungi. Screening of bacterial strains for high temperature (50°C), salinity (7% NaCl), and drought (−1.2 MPa) showed that stress tolerance was pronounced less in Pseudomonas isolates than in Bacillus strains. The reason behind this could be the formation of endospores by Bacillus isolates. Tolerance to drought was high in Pseudomonas strains than the other two stresses. Three strains, P8, P20 and P21 showed both salinity and temperature tolerance. P59 strain possessed promising antagonistic activity and drought tolerance. The magnitude of antagonism shown by Bacillus isolates was also higher when compared to Pseudomonas strains. To conclude, identification of microbial candidate strains with stress tolerance and other added characteristic features would help the end-user obtain the desired beneficial effects.


2021 ◽  
Vol 913 (1) ◽  
pp. 012022
Author(s):  
N A Saryanah ◽  
Y P Roswanjaya ◽  
S Himawati ◽  
Sulastri ◽  
I S Bidara ◽  
...  

Abstract Bacterial endophyte and rhizobacteria were reported to associate with medicinal plants including Zingiberaceae plants and involved in growth promotion. These beneficial bacteria are promising candidates as biostimulants because of their ability in promoting plant growth. This study aims to evaluate the activity of endophytic and rhizosphere bacteria isolated from Curcuma xanthorrhiza (Javanese turmeric) in promoting rice seedling and Javanese turmeric growth. Fifty-seven of 150 total bacterial isolates with negative hemolysis and hypersensitivity reactions were characterized to investigate their plant growth-promoting (PGP) traits. Ten selected bacteria (two bacterial endophytes and eight rhizobacteria) with multiple PGP traits were inoculated to rice seed with seed treatment and inoculated to Javanese turmeric rhizome with seed treatment and seed treatment+soil soil drenching. Our results showed that bacterial isolates tested on rice seed promoted rice seedling growth significantly. A total of five, three, six, and three bacterial isolates could increase leaf number, root length, fresh shoot weight, and fresh root weight of rice seedling (p<0.05), respectively. In contrast, all of the bacterial isolates tested on Javanese turmeric rhizomes showed a non-significant effect on the plant growth. Further studies should be considered to investigate the effect of formulated potential bacterial isolates with different application frequencies and environmental conditions on the harvest yield of rice and Javanese turmeric as well as active compounds of Javanese turmeric.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Jonathan Gerbore ◽  
Aline Brutel ◽  
Arnaud Lemainque ◽  
Barbara Mairey ◽  
Claudine Médigue ◽  
...  

The complete genome of Bacillus methylotrophicus strain B25, isolated in Switzerland, was sequenced. Its size is 3.85 Mb, and several genes that may contribute to plant growth-promoting activities were identified in silico .


Sign in / Sign up

Export Citation Format

Share Document