scholarly journals On the Existence of Linearly Oscillating Galaxies

Author(s):  
Mahir Hadžić ◽  
Gerhard Rein ◽  
Christopher Straub

AbstractWe consider two classes of steady states of the three-dimensional, gravitational Vlasov-Poisson system: the spherically symmetric Antonov-stable steady states (including the polytropes and the King model) and their plane symmetric analogues. We completely describe the essential spectrum of the self-adjoint operator governing the linearized dynamics in the neighborhood of these steady states. We also show that for the steady states under consideration, there exists a gap in the spectrum. We then use a version of the Birman-Schwinger principle first used by Mathur to derive a general criterion for the existence of an eigenvalue inside the first gap of the essential spectrum, which corresponds to linear oscillations about the steady state. It follows in particular that no linear Landau damping can occur in the neighborhood of steady states satisfying our criterion. Verification of this criterion requires a good understanding of the so-called period function associated with each steady state. In the plane symmetric case we verify the criterion rigorously, while in the spherically symmetric case we do so under a natural monotonicity assumption for the associated period function. Our results explain the pulsating behavior triggered by perturbing such steady states, which has been observed numerically.

2015 ◽  
Vol 159 (3) ◽  
pp. 529-546 ◽  
Author(s):  
MAHIR HADŽIĆ ◽  
GERHARD REIN

AbstractFamilies of steady states of the spherically symmetric Einstein–Vlasov system are constructed, which are parametrised by the central redshift. It is shown that as the central redshift tends to zero, the states in such a family are well approximated by a steady state of the Vlasov–Poisson system, i.e., a Newtonian limit is established where the speed of light is kept constant as it should be and the limiting behavior is analysed in terms of a parameter which is tied to the physical properties of the individual solutions. This result is then used to investigate the stability properties of the relativistic steady states with small redshift parameter in the spirit of recent work by the same authors, i.e., the second variation of the ADM mass about such a steady state is shown to be positive definite on a suitable class of states.


2000 ◽  
Vol 11 (3) ◽  
pp. 293-351 ◽  
Author(s):  
R. S. LAUGESEN ◽  
M. C. PUGH

We consider nonnegative steady-state solutions of the evolution equationformula hereOur class of coefficients f, g allows degeneracies at h = 0, such as f(0) = 0, as well as divergences like g(0) = ±∞. We first construct steady states and study their regularity. For f, g > 0 we construct positive periodic steady states, and non-negative steady states with either zero or nonzero contact angles. For f > 0 and g < 0, we prove there are no non-constant positive periodic steady states or steady states with zero contact angle, but we do construct non-negative steady states with nonzero contact angle. In considering the volume, length (or period) and contact angle of the steady states, we find a rescaling identity that enables us to answer questions such as whether a steady state is uniquely determined by its volume and contact angle. Our tools include an improved monotonicity result for the period function of the nonlinear oscillator. We also relate the steady states and their scaling properties to a recent blow-up conjecture of Bertozzi and Pugh.


2013 ◽  
Vol 155 (3) ◽  
pp. 529-556 ◽  
Author(s):  
MAHIR HADŽIĆ ◽  
GERHARD REIN

AbstractThe stability of static solutions of the spherically symmetric, asymptotically flat Einstein–Vlasov system is studied using a Hamiltonian approach based on energy-Casimir functionals. The main results are a coercivity estimate for the quadratic part of the expansion of the natural energy-Casimir functional about an isotropic steady state, and the linear stability of such steady states. The coercivity bound shows in a quantified way that this quadratic part is positive definite on a class of linearly dynamically accessible perturbations, provided the particle distribution of the steady state is a strictly decreasing function of the particle energy and provided the steady state is not too relativistic. In contrast to the stability theory for isotropic steady states of the gravitational Vlasov-Poisson system the monotonicity of the particle distribution alone does not determine the stability character of the state, a fact which was observed by Ze'ldovitch et al. in the 1960's. The result in an essential way exploits the non-linear structure of the Einstein equations satisfied by the steady state and is not just a perturbation result of the analogous coercivity bounds for the Newtonian case. It should be an essential step in a fully non-linear stability analysis for the Einstein–Vlasov system.


2012 ◽  
Vol 17 (6) ◽  
pp. 1227-1251 ◽  
Author(s):  
Eric W. Bond ◽  
Kazumichi Iwasa ◽  
Kazuo Nishimura

We extend the dynamic Heckscher–Ohlin model in Bond et al. [Economic Theory(48, 171–204, 2011)] and show that if the labor-intensive good is inferior, then there may exist multiple steady states in autarky and poverty traps can arise. Poverty traps for the world economy, in the form of Pareto-dominated steady states, are also shown to exist. We show that the opening of trade can have the effect of pulling the initially poorer country out of a poverty trap, with both countries having steady state capital stocks exceeding the autarky level. However, trade can also pull an initially richer country into a poverty trap. These possibilities are a sharp contrast with dynamic Heckscher–Ohlin models with normality in consumption, where the country with the larger (smaller) capital stock than the other will reach a steady state where the level of welfare is higher (lower) than in the autarkic steady state.


2008 ◽  
Vol 18 (01) ◽  
pp. 219-225 ◽  
Author(s):  
DANIEL TURZÍK ◽  
MIROSLAVA DUBCOVÁ

We determine the essential spectrum of certain types of linear operators which arise in the study of the stability of steady state or traveling wave solutions in coupled map lattices. The basic tool is the Gelfand transformation which enables us to determine the essential spectrum completely.


1998 ◽  
Vol 53 (3-4) ◽  
pp. 171-177
Author(s):  
Hsing-Ya Li

Abstract A chemical reaction network can admit multiple positive steady states if and only if there exists a positive steady state having a zero eigenvalue with its eigenvector in the stoichiometric subspace. A zero eigenvalue analysis is proposed which provides a necessary and sufficient condition to determine the possibility of the existence of such a steady state. The condition forms a system of inequalities and equations. If a set of solutions for the system is found, then the network under study is able to admit multiple positive steady states for some positive rate constants. Otherwise, the network can exhibit at most one steady state, no matter what positive rate constants the system might have. The construction of a zero-eigenvalue positive steady state and a set of positive rate constants is also presented. The analysis is demonstrated by two examples.


Sign in / Sign up

Export Citation Format

Share Document