scholarly journals Influence of different leavening agents on technological and nutritional characteristics of whole grain breads obtained from ancient and modern flour varieties

Author(s):  
Manuel Venturi ◽  
Viola Galli ◽  
Niccolò Pini ◽  
Simona Guerrini ◽  
Costanza Sodi ◽  
...  

AbstractThe aim of the work was to assess the influence of the leavening agent on several technological, chemical, and nutritional characteristics of breads prepared with whole soft wheat (Triticum aestivum L.) flours. As leavening agents in bread-making, baker’s yeast, biga, and sourdough were utilized. Two ancient varieties, Andriolo and Verna, and a modern grain variety, Bologna, were used. Analysis of the obtained breads included the measurement of the phenols content, the antioxidant activity, the in vitro protein and total digestibility, the texture profile, the crumb grain characteristics and the microbial shelf-life test. The results of the principle component analysis of bread features indicated a clustering depending especially on the leavening agent rather than on the employed flour, particularly when sourdough was used. Protein digestibility, crumb grain characteristics, and shelf-life led to the main differences among the samples. Ancient wheat flour displayed similar features when the same leavening agent was applied. Particularly, the use of sourdough levelled the differences due to flour, leading to breads with similar technological and nutritional characteristics. The findings highlighted a marked effect of the leavening agent on bread final characteristics.

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2285
Author(s):  
Gaetano Cardone ◽  
Rubina Rumler ◽  
Sofia Speranza ◽  
Alessandra Marti ◽  
Regine Schönlechner

Despite being considered a climate-resilient crop, sorghum is still underutilized in food processing because of the limited starch and protein functionality. For this reason, the objective of this study was to investigate the effect of sprouting time on sorghum functional properties and the possibility to exploit sprouted sorghum in bread making. In this context, red sorghum was sprouted for 24, 36, 48, 72, and 96 h at 27 °C. Sprouting time did not strongly affect the sorghum composition in terms of total starch, fiber, and protein contents. On the other hand, the developed proteolytic activity had a positive effect on oil-absorption capacity, pasting, and gelation properties. Conversely, the increased α-amylase activity in sprouted samples (≥36 h) altered starch functionality. As regards sorghum-enriched bread, the blends containing 48 h-sprouted sorghum showed high specific volume and low crumb firmness. In addition, enrichment in sprouted sorghum increased both the in vitro protein digestibility and the slowly digestible starch fraction of bread. Overall, this study showed that 48 h-sprouted sorghum enhanced the bread-making performance of wheat-based products.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 199
Author(s):  
Gokcen Kahraman ◽  
Sebnem Harsa ◽  
Maria Cristina Casiraghi ◽  
Mara Lucisano ◽  
Carola Cappa

The main objective of this study was to develop a healthy rice-based gluten-free bread by using raw, roasted, or dehulled chickpea flours. All breads containing chickpea flours showed a darker crust and were characterized by an alveolar (porosity 41.5–51.4%) and soft crumb (hardness 5.5-14.1 N). Roasted chickpea flour bread exhibited the highest specific volume, the softest crumb, and the slowest staling rate. Enriching rice-based breads with the chickpea flours resulted in increased protein (from 9.72 to 12.03–13.21 g/100 g dm), ash (from 2.01 to 2.45–2.78 g/100 g dm), fat (from 1.61 to 4.58–5.86 g/100 g), and total phenolic contents (from 49.36 up to 80.52 mg GAE/100 g dm), and in reduced (~10–14% and 13.7–17%, respectively) available starch levels and rapidly digestible starch compared to rice bread. Breads with roasted chickpea flour also showed the highest in vitro protein digestibility. The results of this study indicated that the enrichment of rice-based gluten-free breads with chickpea flours improved the technological and nutritional quality of the breads differently according to the processed chickpea flour used, also allowing recovery of a waste product.


2020 ◽  
Vol 16 (5) ◽  
pp. 749-756
Author(s):  
Fredrick B. Agengo ◽  
Arnold N. Onyango ◽  
Charlotte A. Serrem ◽  
Judith Okoth

Background: Formulation of composite flours from wheat and non-wheat flours has been proposed as the most desirable way to improve the nutritional quality in diets, promote food security and lower the cost of baked products. Objective: This study evaluated the effect of fortification with snail meat powder on physicochemical properties and shelf-life of sorghum-wheat buns. Methods: Buns were prepared by replacing a part of sorghum-wheat flour with 5, 10, 15, 20, and 25% of snail meat powder. Physical properties including volume, density, baking loss, yield, weight, hardness and colour, the proximate analyses including moisture, crude protein, crude fat, crude fibre and ash and mineral composition of iron, zinc, calcium, magnesium and copper were analyzed for the buns. In vitro protein digestibility was determined by pepsin digestion. Plate count agar and potato dextrose agar were respectively used for enumeration of bacterial and fungal flora in the buns during storage. Shelf-life determination was based on the number of days before the production of off flavours and fungal infestation. Results: Compositing sorghum-wheat flour with snail meat powder progressively improved the density, baking loss, yield, weight and texture of the buns. Protein, fat, ash, energy, iron, zinc, calcium, magnesium and copper contents were also increased. Fortification of buns at 5% and 25% with SMP improved in vitro protein digestibility by 16% and 22%, respectively. Maximum bacterial count in buns was below the International Microbiological Standard recommended units for dry and ready to eat foods of 103 cfu/g. Conclusion: Buns composited with snail meat powder showed a considerable potential to be used as protein rich foods in preventing protein energy malnutrition among young children.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1368
Author(s):  
Marbie Alpos ◽  
Sze Ying Leong ◽  
Indrawati Oey

Legumes are typically soaked overnight to reduce antinutrients and then cooked prior to consumption. However, thermal processing can cause over-softening of legumes. This study aimed to determine the effect of calcium addition (0, 100, 300, and 500 ppm in the form of calcium chloride, CaCl2), starting from the overnight soaking step, in reducing the loss of firmness of black beans during thermal processing for up to 2 h. The impact of calcium addition on the in vitro starch and protein digestibility of cooked beans was also assessed. Two strategies of calcium addition were employed in this study: (Strategy 1/S1) beans were soaked and then cooked in the same CaCl2 solution, or (Strategy 2/S2) cooked in a freshly prepared CaCl2 solution after the calcium-containing soaking medium was discarded. Despite the texture degradation of black beans brought about by increasing the cooking time, texture profile analysis (TPA) revealed that their hardness, cohesiveness, springiness, chewiness, and resilience improved significantly (p < 0.05) with increasing calcium concentration. Interestingly, beans cooked for 2 h with 300 ppm CaCl2 shared similar hardness with beans cooked for 1 h without calcium addition. Starch and protein digestibility of calcium-treated beans generally improved with prolonged cooking. However, calcium-treated beans cooked for 1 h under S2 achieved a reduced texture loss and a lower starch digestibility than those beans treated in S1. A lower starch digestion could be desired as this reflects a slow rise in blood glucose levels. Findings from this result also showed that treating black beans with high level of CaCl2 (i.e., 500 ppm) was not necessary, otherwise this would limit protein digestibility of cooked black beans.


Author(s):  
Olaposi Adeleke ◽  
Oladipupo Qudus Adiamo ◽  
Olumide Samson Fawale ◽  
Gbeminiyi Olamiti

Newly developed Bambara groundnut (Vigna subterranea L.) seeds (Accessions No: TVSU 5 – Bambara Groundnut White (BGW) and TVSU 146 – Bambara Groundnut Brown (BGB)) were collected from International Institute of Tropical Agriculture (IITA), Nigeria, planted and harvested. The effects of processing methods (soaking and boiling) on anti-nutritional factors and oligosaccharides content and protein digestibility of BGW and BGB compared with Bambara groundnut commercial (BGC) seeds were investigated. Soaking and boiling significantly reduced the anti-nutritional factors of the samples and the effect increased as processing time was elongated. Sample BGC had lower anti-nutritional factors than BGW and BGB after soaking for 48 h. Tannin contents of the samples were reduced drastically by 99 % throughout the soaking periods. Greatest loss in raffinose level was observed in BGB (59%) and BGW (50%) after boiling for 60 min compared with BGC (43%). The loss in stachyose content of the samples varies with processing and BGC (59%) had greatest loss after boiling for 60 min while soaking for 48 h reduced that of BGB and BGW by 57 and 35%, respectively. Boiling for 60 min increased the in vitro protein digestibility of BGB (89.34 %) compared with BGW (87.48%) and BGC (82.89%). Overall, the results demonstrated that soaking and boiling of newly developed Bambara groundnut seeds could improve the nutritive quality of the seeds.


Sign in / Sign up

Export Citation Format

Share Document