scholarly journals Non-informative vision improves spatial tactile discrimination on the shoulder but does not influence detection sensitivity

2020 ◽  
Vol 238 (12) ◽  
pp. 2865-2875
Author(s):  
Fabrizio Leo ◽  
Sara Nataletti ◽  
Luca Brayda

Abstract Vision of the body has been reported to improve tactile acuity even when vision is not informative about the actual tactile stimulation. However, it is currently unclear whether this effect is limited to body parts such as hand, forearm or foot that can be normally viewed, or it also generalizes to body locations, such as the shoulder, that are rarely before our own eyes. In this study, subjects consecutively performed a detection threshold task and a numerosity judgment task of tactile stimuli on the shoulder. Meanwhile, they watched either a real-time video showing their shoulder or simply a fixation cross as control condition. We show that non-informative vision improves tactile numerosity judgment which might involve tactile acuity, but not tactile sensitivity. Furthermore, the improvement in tactile accuracy modulated by vision seems to be due to an enhanced ability in discriminating the number of adjacent active electrodes. These results are consistent with the view that bimodal visuotactile neurons sharp tactile receptive fields in an early somatosensory map, probably via top-down modulation of lateral inhibition.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Valeria Peviani ◽  
Lucia Melloni ◽  
Gabriella Bottini

Abstract Distorted representations of the body are observed in healthy individuals as well as in neurological and psychiatric disorders. Distortions of the body model have been attributed to the somatotopic cerebral representation. Recently, it has been demonstrated that visual biases also contribute to those distortions. To better understand the sources of such distortions, we compared the metric representations across five body parts affording different degrees of tactile sensitivity and visual accessibility. We evaluated their perceived dimensions using a Line Length Judgment task. We found that most body parts were underestimated in their dimensions. The estimation error relative to their length was predicted by their tactile acuity, supporting the influence of the cortical somatotopy on the body model. However, tactile acuity did not explain the distortions observed for the width. Visual accessibility in turn does appear to mediate body distortions, as we observed that the dimensions of the dorsal portion of the neck were the only ones accurately perceived. Coherent with the multisensory nature of body representations, we argue that the perceived dimensions of body parts are estimated by integrating visual and somatosensory information, each weighted differently, based on their availability for a given body part and a given spatial dimension.


1977 ◽  
Vol 66 (1) ◽  
pp. 203-219
Author(s):  
W. J. Heitler ◽  
M. Burrows

A motor programme is described for defensive kicking in the locust which is also probably the programme for jumping. The method of analysis has been to make intracellular recordings from the somata of identified motornuerones which control the metathoracic tibiae while defensive kicks are made in response to tactile stimuli. Three stages are recognized in the programme. (1) Initial flexion of the tibiae results from the low spike threshold of tibial flexor motorneurones to tactile stimulation of the body. (2) Co-contraction of flexor and extensor muscles followa in which flexor and extensor excitor motoneurones spike at high frequency for 300-600 ms. the tibia flexed while the extensor muscle develops tension isometrically to the level required for a kick or jump. (3) Trigger activity terminates the co-contraction by inhibiting the flexor excitor motorneurones and simultaneously exciting the flexor inhibitors. This causes relaxation of the flexor muscle and allows the tibiae to extend. If the trigger activity does not occur, the jump or kick is aborted, and the tibiae remain flexed.


1979 ◽  
Vol 42 (4) ◽  
pp. 954-974 ◽  
Author(s):  
S. C. Rosen ◽  
K. R. Weiss ◽  
I. Kupfermann

1. The cells of two clusters of small neurons on the ventrocaudal surface of each hemicerebral ganglion of Aplysia were found to exhibit action potentials following tactile stimuli applied to the skin of the head. These neurons appear to be mechanosensory afferents since they possess axons in the nerves innervating the skin and tactile stimulation evokes spikes with no prepotentials, even when the cell bodies are sufficiently hyperpolarized to block some spikes. The mechanosensory afferents may be primary afferents since the sensory response persists after chemical synaptic transmission is blocked by bathing the ganglion and peripheral structures in seawater with a high-Mg2+ and low-Ca2+ content. 2. The mechanosensory afferents are normally silent and are insensitive to photic, thermal, and chemical stimuli. A punctate tactile stimulus applied to a circumscribed region of skin can evoke a burst of spikes. If the stimulus is maintained at a constant forces, the mechanosensory response slowly adapts over a period of seconds. Repeated brief stimuli have little or no effect on spike frequency within a burst. 3. Approximately 81% of the mechanoafferent neurons have a single ipsilateral receptive field. The fields are located on the lips, the anterior tentacles, the dorsal portion of the head, the neck, or the perioral zone. Because many cells have collateral axons in the cerebral connectives, receptive fields elsewhere on the body are a possibility. The highest receptive-field density was associated with the lips. Within each area, receptive fields vary in size and shape. Adjacent fields overlap and larger fields frequently encompass several smaller ones. The features of some fields appear invariant from one animal to the next. A loose form of topographic organization of the mechanoafferent cells was observed. For example, cells located in the medial cluster have lip receptive fields, and most cells in the posterolateral portion of the lateral clusters have tentacle receptive fields. 4. Intracellular stimulation of individual mechanoafferents evokes short and constant-latency EPSPs in putative motor neurons comprising the identified B-cell clusters of the cerebral ganglion. On the basis of several criteria, these EPSPs appear to be several criteria, these EPSPs appear to be chemically mediated and are monosynaptic. 5. Repetitive intracellular stimulation of individual mechanoafferent neurons at low rates results in a gradual decrement in the amplitude of the EPSPs evoked in B cluster neurons. EPSP amplitude can be restored following brief periods of rest, but subsequent stimulation leads to further diminution of the response. 6. A decremented response cannot be restored by strong mechanical stimulation outside the receptive field of the mechanoafferent or by electrical stimulation of the cerebral nerves or connectives...


1999 ◽  
Vol 82 (6) ◽  
pp. 3204-3212 ◽  
Author(s):  
Fred A. Lenz ◽  
Nancy N. Byl

A wide range of observations suggest that sensory inputs play a significant role in dystonia. For example, the map of the hand representation in the primary sensory cortex (area 3b) is altered in monkeys with dystonia-like movements resulting from overtraining in a gripping task. We investigated whether similar reorganization occurs in the somatic sensory thalamus of patients with dystonia (dystonia patients). We studied recordings of neuronal activity and microstimulation-evoked responses from the cutaneous core of the human principal somatic sensory nucleus (ventral caudal, Vc) of 11 dystonia patients who underwent stereotactic thalamotomy. Fifteen patients with essential tremor who underwent similar procedures were used as controls. The cutaneous core of Vc was defined as the part of the cellular thalamic region where the majority of cells had receptive fields (RFs) to innocuous cutaneous stimuli. The proportion of RFs including multiple parts of the body was greater in dystonia patients (29%) than in patients with essential tremor (11%). Similarly, the percentage of projected fields (PFs) including multiple body parts was higher in dystonia patients (71%) than in patients with essential tremor (41%). A match at a thalamic site was said to occur if the RF and PF at that site included a body part in common. Such matches were significantly less prevalent in dystonia patients (33%) than in patients with essential tremor (58%). The average length of the trajectory where the PF included a consistent, cutaneous RF was significantly longer in patients with dystonia than in control patients with essential tremor. The findings of sensory reorganization in Vc thalamus are congruent with those reported in the somatic sensory cortex of monkeys with dystonia-like movements resulting from overtraining in a gripping task.


1965 ◽  
Vol 42 (2) ◽  
pp. 307-322 ◽  
Author(s):  
FRANKLIN B. KRASNE

1. Branchiomma's rapid escape from tactile stimuli is mediated by the pair of giant nerve axons which run the length of the body above the ventral nerve cord. 2. The giant neurons are connected by very stable, polarized junctions to giant motor axons. 3. The giant-fibre escape reflex fails if tactile stimuli are repeated; a non-giant system which continues to cause slower escape eventually fails also. 4. Recovery from reflex failure is slow. 5. The failure of the rapid escape reflex occurs prior to the giant fibre. It is not primarily due to sensory ending accommodation. It cannot be caused by direct stimulation of the giant fibres.


1997 ◽  
Vol 78 (3) ◽  
pp. 1691-1706 ◽  
Author(s):  
Miguel A. L. Nicolelis ◽  
Rick C. S. Lin ◽  
John K. Chapin

Nicolelis, Miguel A. L., Rick C. S. Lin, and John K. Chapin. Neonatal whisker removal reduces the discrimination of tactile stimuli by thalamic ensembles in adult rats. J. Neurophysiol. 78: 1691–1706, 1997. Simultaneous recordings of up to 48 single neurons per animal were used to characterize the long-term functional effects of sensory plastic modifications in the ventral posterior medial nucleus (VPM) of the thalamus following unilateral removal of facial whiskers in newborn rats. One year after this neonatal whisker deprivation, neurons in the contralateral VPM responded to cutaneous stimulation of the face at much longer minimal latencies (15.2 ± 8.2 ms, mean ± SD) than did normal cells (8.8 ± 5.3 ms) in the same subregion of the VPM. In 69% of these neurons, the initial sensory responses to stimulus offset were followed for up to 700 ms by reverberant trains of bursting discharge, alternating in 100-ms cycles with inhibition. Receptive fields in the deafferented VPM were also atypical in that they extended over the entire face, shoulder, forepaw, hindpaw, and even ipsilateral whiskers. Discriminant analysis (DA) was then used to statistically evaluate how this abnormal receptive field organization might affect the ability of thalamocortical neuronal populations to “discriminate” somatosensory stimulus location. To standardize this analysis, three stimulus targets (“groups”) were chosen in all animals such that they triangulated the central region of the “receptive field” of the recorded multineuronal ensemble. In the normal animals these stimulus targets were whiskers or perioral hairs; in the deprived animals the targets typically included hairy skin of the body as well as face. The measured variables consisted of each neuron's spiking response to each stimulus differentiated into three poststimulus response epochs (0–15, 15–30, and 30–45 ms). DA quantified the statistical contribution of each of these variables to its overall discrimination between the three stimulus sites. In the normal animals, the stimulus locations were correctly classified in 88.2 ± 3.7% of trials on the basis of the spatiotemporal patterns of ensemble activity derived from up to 18 single neurons. In the deprived animals, the stimulus locations were much less consistently discriminated (reduced to 73.5 ± 12.6%; difference from controls significant at P < 0.01) despite the fact that much more widely spaced stimulus targets were used and even when up to 20 neurons were included in the ensemble. Overall, these results suggest that neonatal damage to peripheral sense organs may produce marked changes in the physiology of individual neurons in the somatosensory thalamus. Moreover, the present demonstration that these changes can profoundly alter sensory discrimination at the level of neural populations in the thalamus provides important evidence that the well-known perceptual effects of chronic peripheral deprivation may be partially attributable to plastic reorganization at subcortical levels.


2020 ◽  
Author(s):  
A. Zanini ◽  
I. Patané ◽  
E. Blini ◽  
R. Salemme ◽  
E. Koun ◽  
...  

AbstractPeripersonal space is a multisensory representation of the space near body parts facilitating interactions with the close environment. Studies on non-human and human primates converge in showing that peripersonal space (PPS) is a body-part-centred representation that guides actions. Because of these characteristics, growing confusion conflates peripersonal and arm-reaching space (ARS) that is the space one’s arm can reach. Despite neuroanatomical evidence favors their distinction, whether PPS and ARS tap into different spatial representations remains poorly understood. Here, in five experiments we found that PPS differs from ARS in male and female human participants (N = 120), as evidenced both by their performance and the modeling of their multisensory facilitation. We mapped multisensory facilitation in detecting touches at the hand, placed in different locations radially within ARS. Results showed that 1) PPS is smaller than ARS; 2) multivariate modeling of spatial patterns of multisensory facilitation predicts well the position of the participants’ hand within ARS; 3) multisensory facilitation maps shift according to changes of hand position, revealing hand-centred coding of PPS, but not ARS; and 4) cross-correlation analyses highlight isomorphic multisensory facilitation maps across hand positions, suggesting their functional similarity to the receptive fields of monkeys’ multisensory neurons. In sharp contrast, ARS mapping produced undistinguishable patterns across hand positions, cross-validating the conclusion that PPS and ARS are distinct. These findings call for a refinement of theoretical models of PPS and ARS, which are relevant in constructs as diverse as action and self representation, (social) interpersonal distance, brain-machine interfaces and neuroprosthetics.Significance StatementThe peripersonal space (PPS) is a multisensory interface allowing us to interact with objects in the space close to our body-parts, playing a fundamental role for the defense of the body and for the motor control of actions. Recent research has conflated PPS with the arm-reaching space (ARS), that is whole space reachable by the arm. However, there is actually no evidence supporting this equivalence and the anatomical and functional differences between PPS and ARS have been largely overlooked. In this paper, we frame the theoretical issue in depth, validate a novel methodological paradigm across five experiments, and eventually report robust and cross-validated evidence for the distinction between PPS and ARS, supported by both multivariate and univariate analyses.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
In-Seon Lee ◽  
Won-mo Jung ◽  
Hi-Joon Park ◽  
Younbyoung Chae

Background. Multivoxel pattern analysis has provided new evidence on somatotopic representation in the human brain. However, the effects of stimulus modality (e.g., penetrating needle versus non-penetrating touch) and level of classification (e.g., multiclass versus binary classification) on patterns of brain activity encoding spatial information of body parts have not yet been studied. We hypothesized that performance of brain-based prediction models may vary across the types of stimuli, and neural patterns of voxels in the SI and parietal cortex would significantly contribute to the prediction of stimulated locations. Objective. We aimed to (1) test whether brain responses to tactile stimuli could distinguish among stimulated locations on the body surface, (2) investigate whether the stimulus modality and number of classes affect classification performance, and (3) localize brain regions encoding the spatial information of somatosensory stimuli. Methods. Fifteen healthy participants completed two functional magnetic resonance imaging (MRI) scans and were stimulated via the insertion of acupuncture needles or by non-invasive touch stimuli (5.46-sized von Frey filament). Participants received the stimuli at four different locations on the upper and lower limbs (two sites each) for 5 min while blood-oxygen-level-dependent activity (BOLD) was measured using 3-Tesla MRI. We performed multivariate pattern analysis (MVPA) using parameter estimate images of each trial for each participant and the support vector classifier (SVC) function, and the prediction accuracy and other MVPA outcomes were evaluated using stratified five-fold cross validation. We estimated the significance of the classification accuracy using a permutation test with randomly labeled training data (n=10,000). Searchlight analysis was conducted to identify brain regions associated with significantly higher accuracy compared to predictions based on chance as obtained from a random classifier. Results. For the four-class classification (classifying four stimulated points on the body), SVC analysis of whole-brain beta values in response to acupuncture stimulation was able to discriminate among stimulated locations (mean accuracy, 0.31; q<0.01). The searchlight analysis found that values related to the right primary somatosensory cortex (SI) and intraparietal sulcus were significantly more accurate than those due to chance (p<0.01). On the other hand, the same classifier did not predict stimulated locations accurately for touch stimulation (mean accuracy, 0.25; q=0.66). For binary classification (discriminating between two stimulated body parts, i.e., the arm or leg), the SVC algorithm successfully predicted the stimulated body parts for both acupuncture (mean accuracy, 0.63; q<0.001) and touch stimulation (mean accuracy, 0.60; q<0.01). Searchlight analysis revealed that predictions based on the right SI, primary motor cortex (MI), paracentral gyrus, and superior frontal gyrus were significantly more accurate compared to predictions based on chance (p<0.05). Conclusion. Our findings suggest that the SI, as well as the MI, intraparietal sulcus, paracentral gyrus, and superior frontal gyrus, is responsible for the somatotopic representation of body parts stimulated by tactile stimuli. The MVPA approach for identifying neural patterns encoding spatial information of somatosensory stimuli may be affected by the stimulus type (penetrating needle versus non-invasive touch) and the number of classes (classification of four small points on the body versus two large body parts). Future studies with larger samples will identify stimulus-specific neural patterns representing stimulated locations, independent of subjective tactile perception and emotional responses. Identification of distinct neural patterns of body surfaces will help in improving neural biomarkers for pain and other sensory percepts in the future.


1978 ◽  
Vol 41 (4) ◽  
pp. 837-847 ◽  
Author(s):  
L. M. Aitkin ◽  
H. Dickhaus ◽  
W. Schult ◽  
M. Zimmermann

1. The discharges of 129 units were studied in the external nucleus of the inferior colliculus of 11 anesthetised and paralyzed cats. This region is known to receive fibers from auditory nuclei and the dorsal column nuclei. 2. Stimuli used were pure tone bursts, monaural or binaural, tactile stimulation of the body surface, and electrical stimulation of the dorsal columns (DC) at a low cervical level and of the contralateral and ipsilateral tibial nerves. 3. Forty-six percent of units were only influenced by one type of stimulation (26% auditory, 20% DC). Of the remaining bimodally influenced units, the majority was excited by pure tone stimuli and inhibited by DC stimulation. 4. A small proportion of the total population (18%) was excited by both DC and auditory input, and units sensitive to both tones and tactile stimulation of the skin were rare (4%). 5. Auditory tuning curves were generally very broad compared with those of units in the central nucleus of the inferior colliculus. Similarly, somatic receptive fields were large and usually extended over a whole limb. 6. The majority of tone-responsive units were influenced binaurally (70%); most somatic receptive fields were located on the contralateral fore- or hindlimb (16/18). 7. The results indicate that both auditory and somatosensory information is contained in the discharges of units in the external nucleus of the inferior colliculus. 8. Speculations are made about the role of this nucleus in descending auditory input to the spinal cord and in the comparison of auditory and cutaneous information during sound-evoked coordinated body movements.


1989 ◽  
Vol 62 (2) ◽  
pp. 510-525 ◽  
Author(s):  
J. G. McHaffie ◽  
C. Q. Kao ◽  
B. E. Stein

1. Extracellular recordings were made from single superior colliculus neurons in urethane-anesthetized rats in response to mechanical and/or thermal stimulation of the skin. In addition to those activated by low-threshold (LT) tactile stimuli, many neurons responded preferentially, or solely, to noxious stimuli. Two functionally defined subtypes of nociceptive neurons were distinguished: wide-dynamic-range (WDR) neurons, which responded optimally to noxious stimuli but also to innocuous stimuli; and nociceptive-specific (NS) neurons, which responded solely to frankly noxious stimuli. The thermal thresholds were 42-45 degrees C, and the stimulus-response relationships were positively accelerating power functions with exponents of 2.9 (WDR) and 3.1 (NS). 2. WDR neurons also responded to cooling of the skin to temperatures below 24 degrees C. Like noxious heat responses, cold responses were monotonically graded as the intensity of the cold stimulus was increased. Thus the temperature sensitivity of thermal-sensitive neurons in the superior colliculus appeared to be tuned to detect large deviations from ambient skin temperature in either direction once threshold is reached. 3. LT neurons were somatotopically organized, with the head and forelimbs rostral and the trunk and hindlimbs caudal. The limbs were generally represented further lateral in the structure, whereas more proximal body parts were more medial. Nevertheless, there was extensive overlap of body parts especially in areas of transition. Thus, a "block-to-block" or "area-to-area" rather than a "point-to-point" representation of the body surface was evident. 4. The nociceptive representation did not violate the general LT somatotopy but neither was it coextensive. Virtually all nociceptive neurons had trigeminal receptive fields and were thus heavily represented in the rostral superior colliculus, where the LT face representation was also located. No nociceptive neurons were present in the caudal one-third of the structure. A general dorsal-to-ventral segregation of somatosensory neurons also was noted, so that in a given electrode penetration, LT neurons usually were the most superficial, WDR neurons were just below these, and NS neurons were deepest of all. 5. The presence of overlapping LT and nociceptive trigeminal representations in the superior colliculus seems particularly adaptive in view of the fact that rodents use their vibrissae for exploring their environment and thus put rostral body parts at risk during such behaviors.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document