The locust jump. I. The motor programme

1977 ◽  
Vol 66 (1) ◽  
pp. 203-219
Author(s):  
W. J. Heitler ◽  
M. Burrows

A motor programme is described for defensive kicking in the locust which is also probably the programme for jumping. The method of analysis has been to make intracellular recordings from the somata of identified motornuerones which control the metathoracic tibiae while defensive kicks are made in response to tactile stimuli. Three stages are recognized in the programme. (1) Initial flexion of the tibiae results from the low spike threshold of tibial flexor motorneurones to tactile stimulation of the body. (2) Co-contraction of flexor and extensor muscles followa in which flexor and extensor excitor motoneurones spike at high frequency for 300-600 ms. the tibia flexed while the extensor muscle develops tension isometrically to the level required for a kick or jump. (3) Trigger activity terminates the co-contraction by inhibiting the flexor excitor motorneurones and simultaneously exciting the flexor inhibitors. This causes relaxation of the flexor muscle and allows the tibiae to extend. If the trigger activity does not occur, the jump or kick is aborted, and the tibiae remain flexed.

2020 ◽  
Vol 238 (12) ◽  
pp. 2865-2875
Author(s):  
Fabrizio Leo ◽  
Sara Nataletti ◽  
Luca Brayda

Abstract Vision of the body has been reported to improve tactile acuity even when vision is not informative about the actual tactile stimulation. However, it is currently unclear whether this effect is limited to body parts such as hand, forearm or foot that can be normally viewed, or it also generalizes to body locations, such as the shoulder, that are rarely before our own eyes. In this study, subjects consecutively performed a detection threshold task and a numerosity judgment task of tactile stimuli on the shoulder. Meanwhile, they watched either a real-time video showing their shoulder or simply a fixation cross as control condition. We show that non-informative vision improves tactile numerosity judgment which might involve tactile acuity, but not tactile sensitivity. Furthermore, the improvement in tactile accuracy modulated by vision seems to be due to an enhanced ability in discriminating the number of adjacent active electrodes. These results are consistent with the view that bimodal visuotactile neurons sharp tactile receptive fields in an early somatosensory map, probably via top-down modulation of lateral inhibition.


1965 ◽  
Vol 42 (2) ◽  
pp. 307-322 ◽  
Author(s):  
FRANKLIN B. KRASNE

1. Branchiomma's rapid escape from tactile stimuli is mediated by the pair of giant nerve axons which run the length of the body above the ventral nerve cord. 2. The giant neurons are connected by very stable, polarized junctions to giant motor axons. 3. The giant-fibre escape reflex fails if tactile stimuli are repeated; a non-giant system which continues to cause slower escape eventually fails also. 4. Recovery from reflex failure is slow. 5. The failure of the rapid escape reflex occurs prior to the giant fibre. It is not primarily due to sensory ending accommodation. It cannot be caused by direct stimulation of the giant fibres.


1986 ◽  
Vol 120 (1) ◽  
pp. 173-188 ◽  
Author(s):  
J. Jellies ◽  
J. L. Larimer

The premotor interneurones that produce coordinated abdominal movements in crayfish (Procambarus) when stimulated directly, are also ‘sensorimotor’. Sets of these interneurones respond in predictable ways to touching the body surface. One set of interneurones (type I) is activated to spiking by touch, while another (type II) receives only subthreshold influences. Several of these interneurones have overlapping receptive fields on the body surface. Touching areas of overlap activates groups of interneurones which discharge at low to moderate frequencies, rather than producing a high-frequency discharge of a single cell. No single positioning interneurone has been identified which is solely responsible for a “voluntary” (spontaneous) motor programme. When active, the positioning interneurones contribute to the production of the behaviour as a member of a constellation of such cells. The results show that this motor system comprises interneurones with sensory as well as motor properties. Although single cells can produce coordinated movements when stimulated at high frequencies, these positioning interneurones appear to function as ‘command elements’ within a large ‘command system’ and not as individual units.


Development ◽  
1964 ◽  
Vol 12 (4) ◽  
pp. 665-671
Author(s):  
Michael Corner

Previous observations of the development of somatic movements in amphibians concentrated their attention on ‘reflex’ mechanisms (for review, see Hooker, 1952). Extensive study has been made of the types of movement evoked by tactile stimulation at different stages in early development and on the anatomical basis for such responses. Emphasis was thus placed upon the formation of direct pathways through the central nervous system from receptor to effector. For the swimming movements, this approach was able to account for (a) the cranio-caudal wave of somite contractions, in response to sensory input from any part of the body surface, and (b) the existence of a phase difference between the waves on the two sides of the body. A quantitative characterization of behavior at successive stages has also been made, in terms of the distances travelled per response (cf. Detwiler, 1948; Sladeček, 1960).


2016 ◽  
Author(s):  
Roy Salomon ◽  
Jean-Paul Noel ◽  
Marta Łukowska ◽  
Nathan Faivre ◽  
Thomas Metzinger ◽  
...  

AbstractRecent studies have highlighted the role of multisensory integration as a key mechanism of self-consciousness. In particular, integration of bodily signals within the peripersonal space (PPS) underlies the experience of the self in a body we own (self-identification) and that is experienced as occupying a specific location in space (self-location), two main components of bodily self-consciousness (BSC). Experiments investigating the effects of multisensory integration on BSC have typically employed supra-threshold sensory stimuli, neglecting the role of unconscious sensory signals in BSC, as tested in other consciousness research. Here, we used psychophysical techniques to test whether multisensory integration of bodily stimuli underlying BSC may also occur for multisensory inputs presented below the threshold of conscious perception. Our results indicate that visual stimuli rendered invisible (through continuous flash suppression) boost processing of tactile stimuli on the body (Exp. 1), and enhance the perception of near-threshold tactile stimuli (Exp. 2), only once they entered peripersonal space. We then employed unconscious multisensory mechanisms to manipulate BSC. Participants were presented with tactile stimulation on their body and with visual stimuli on a virtual body, seen at a distance, which were either visible or rendered invisible. We report that if visuo-tactile stimulation was synchronized, participants self-identified with the virtual body (Exp. 3), and shifted their self-location toward the virtual body (Exp.4), even if visual stimuli were fully invisible. Our results indicate that multisensory inputs, even outside of awareness, are integrated and affect the phenomenological content of self-consciousness, grounding BSC firmly in the field of psychophysical consciousness studies.


2016 ◽  
Vol 136 (8) ◽  
pp. 1135-1141
Author(s):  
Ryo Hasegawa ◽  
Amir Maleki ◽  
Masafumi Uchida
Keyword(s):  
The Body ◽  

Author(s):  
Nora Goldschmidt ◽  
Barbara Graziosi

The Introduction sheds light on the reception of classical poetry by focusing on the materiality of the poets’ bodies and their tombs. It outlines four sets of issues, or commonplaces, that govern the organization of the entire volume. The first concerns the opposition between literature and material culture, the life of the mind vs the apprehensions of the body—which fails to acknowledge that poetry emerges from and is attended to by the mortal body. The second concerns the religious significance of the tomb and its location in a mythical landscape which is shaped, in part, by poetry. The third investigates the literary graveyard as a place where poets’ bodies and poetic corpora are collected. Finally, the alleged ‘tomb of Virgil’ provides a specific site where the major claims made in this volume can be most easily be tested.


2021 ◽  
Vol 13 (5) ◽  
Author(s):  
Viktória Mozgai ◽  
Bernadett Bajnóczi ◽  
Zoltán May ◽  
Zsolt Mráv

AbstractThis study details the non-destructive chemical analysis of composite silver objects (ewers, situlas, amphora and casket) from one of the most significant late Roman finds, the Seuso Treasure. The Seuso Treasure consists of fourteen large silver vessels that were made in the fourth–early fifth centuries AD and used for dining during festive banquets and for washing and beautification. The measurements were systematically performed along a pre-designed grid at several points using handheld X-ray fluorescence analysis. The results demonstrate that all the objects were made from high-quality silver (above 90 wt% Ag), with the exception of the base of the Geometric Ewer B. Copper was added intentionally to improve the mechanical properties of soft silver. The gold and lead content of the objects shows constant values (less than 1 wt% Au and Pb). The chemical composition as well as the Bi/Pb ratio suggests that the parts of the composite objects were manufactured from different silver ingots. The ewers were constructed in two ways: (i) the base and the body were made separately, or (ii) the ewer was raised from a single silver sheet. The composite objects were assembled using three methods: (i) mechanical attachment; (ii) low-temperature, lead-tin soft solders; or (iii) high-temperature, copper-silver hard solders. Additionally, two types of gilding were revealed by the XRF analysis, one with remnants of mercury, i.e. fire-gilding, and another type without remnants of mercury, presumably diffusion bonding.


2010 ◽  
Vol 36 ◽  
pp. 293-296
Author(s):  
Yoshio Kurosawa ◽  
Takao Yamaguchi

We have developed a technique for estimating vibrations of an automotive body structures with viscoelastic damping materials using large-scale finite element (FE) model, which will enable us to grasp and to reduce high-frequency road noise(200~500Hz). In the new technique, first order solutions for modal loss factors are derived applying asymptotic method. This method saves calculation time to estimate modal damping as a practical tool in the design stages of the body structures. Frequency responses were calculated using this technique and the results almost agreed with the test results. This technique can show the effect of the viscoelastic damping materials on the automotive body panels, and it enables the more efficient layout of the viscoelastic damping materials. Further, we clarified damping properties of the automotive body structures under coupled vibration between frames and panels with the viscoelastic damping materials.


1939 ◽  
Vol 17 (2) ◽  
pp. 69-82 ◽  
Author(s):  
D. W. Fenwick

Numerous attempts have been made in the past to induce the eggs of Ascaris suum to hatch outside the body of the host. Extra-corporeal hatching has been observed under a variety of conditions by different workers. Kondo (1920, 1922), Asada (1921) and others record hatching in water, charcoal and sand cultures. Wharton (1915) states that hatching will occur in alkaline digestive juices, while Martin (1913) records a similar phenomenon in pancreatic fluid. Many different explanations have been offered to explain this hatching. Wharton suggested that the interaction of algae and sand might have some effect. Ohba (1923), who found that hatching would occur in 0·2% hydrochloric acid and 0·2% sodium carbonate believed that extra-corporeal hatching was limited to very old cultures of eggs. Many workers are of the opinion that some stimulus normally present in the digestive tract is necessary for hatching.


Sign in / Sign up

Export Citation Format

Share Document